
_n s the Secon

oint i no 'Workshopetworks ani:i
uzz LOg

NASA Conference Publication 10061

jProceedings of the Secondnt Technology Worksho
on Neural Networks an_

Fuzzy Logic
Volume I

Robert N. Lea and

James Villarreal, Editors

NASA Lyndon B. Johnson Space Center

Houston, Texas

Proceedings of a workshop sponsored by the

National Aeronautics and Space Administration,

Washington, D.C., and cosponsored by

Lyndon B. Johnson Space Center and

the University of Houston, Clear Lake

Houston, Texas

April 10 - 13, 1990

NASA
National Aeronautics and

Space Ad ministration

February 1991

Proceedings of the Second Joint Technology Workshop

on Neural Networks and Fuzzy Logic

Program

April 10_ 1990 PM

6: 00-8:00 Registration

April 11_ 1990AM

Registration7: 30-8:00

8:00-8:30

8:30-9:00

9:00-9:30

9:30-9:45

9:45-10:45

10:45-11:45

Robert T. Savely, Branch Chief, Software Technology Branch, NASNLyndon B.

Johnson 5pace Center, Houston, TX, Welcoming Remarks

Jon Erickson, Division Chief, Automation and Robotics Division, NASNLyndon B.

Johnson Space Center, Houston, TX, Overview of Space Station

Barney Roberts, Planet Surface System Manager, NASNLyndon B. Johnson Space

Center, Houston, TX, Overview of Mars/Lunar Initiative

Break

Bernard Widrow, Stanford University, Neural Control Systems

Bart Kosko, University of Southern California, Los Angeles, CA, Fuzzy Sets and
Associative Memories

11:45-1:00 Lunch

April 11, 1990 PM

1:00-1:45

1:45-2:15

2:15-2:30

2:30-3:00

3:00-3:30

3:30-3:45

Hal White, University of California at San Diego, Neural Network Representations

and Learning of Mappings and their Derivatives

Masaki Togai, Togai Infralogic, Inc., Irvine, CA, Impact of Application of Fuzzy

Theory to Industry

Break

Takeshi Yamakawa, Kyushu Institute of Technology, lizuka, Fukuoka, Japan, Time-

Sweeping Mode Fuzzy Computer Hardware System --- Forward and Backward

Fuzzy Inference Engine ---

P. Z. Wang, Institute of Systems Science, National University of Singapore, The

Simplification of Fuzzy Control Algorithm and Hardware Implementation

Break

v

PRECEDING PAGE BLANK NOT FILME_

3:45-5:15 LoffiZadeh;Universityof Californiaat Berkeley,moderatorof paneldiscussionon

FuzzySets,Neural Networks, and Intelligent Control

Panel members include:

Bernard Widrow, Stanford University

Bart Kosko, University of Southern California

Masaki Togai, Togai Infralogic Corporation

Takeshi Yamakawa, Kyushu Institute of Technology
P. Z. Wang. National University of Singapore

Hal White, University of California, San Diego

Elie Sanchez, Neural and Fuzzy Systems Institute, Marseilles, France
Paul Werbos, National Science Foundation.

6;00-7:00 Wine and Cheese Receptio n

7;00-9:00 Banquet and Keynote Speaker

Professor Loffi Zadeh: The Role of Logic in Human and Machine Intelligence.

April 12, ,1990 AM

8:00-8:30 James Anderson, Brown University, Providence, RI, Experiments with
Representations in Simple Neural Networks

8:30-9:00 James Bezdek, University of West Florida, Generalized Self Organizing Clustering
Schemes

9:00-9:15 Break

9:15-9:45 Hiroyuki Watanabe, University of North Carolina, Chapel Hill, NC, A Single Board
Fuzzy Inference System

9:45-10:15 Isao Hayashi, Central Research Laboratories, Matsushita Electrical Industrial Co.,

The Learning Function of NN-Driven Fuzzy Reasoning under Changes of Reasoning
Environment

=1Q_15-10:30 Break

10:30-11:00 Kaoru Hirota, Hosei University, Tokyo, Japan, A Solution of Inverse Problem of

Fuzzy Relational Equation by using Perceptron Model

11:00-11:45 Masaki Togai, Togai !nfralogic, Inc., Irvine, CA, Overview of LIFE (Laboratory for

International Fuzzy Engineering) Research

1 ! :45-1:00 Lunch

April 12, !990 PM

!:00-1:30 James Keller, University of Missouri, Columbia, MO, Experiments on Neural

Network Architectures for Fuzzy Logic

1:30-2:00

2:00-2:30

John Yen, Texas A&M University, College Station, TX, Using Fuzzy Logic to

Integrate Neural Networks and Knowledge-based Systems

Hamid Berenji, Ames Research Center, Palo Alto, CA, An Architecture for

Designing Fuzzy Controllers Using Neural Networks

2:30-2:45

2:45-3:15

3:15-3:45

3:45-4:15

4:15-4:45

4:45-5:15

April 13, 1990 AM

8:00-8:30

8:30-9:00

9:00-9:15

9:15-9:45

9:45-10:15

10:15-10:45

10:45-11:00

11:00-11:30

Break

Rod Taber, Center of Applied Optics, University of Alabama in Huntsville,

Huntsville, Alabama, Spatiotemporal Pattern Recognition with the Neuron Ring

Robert Shelton and James Villarreal, NASAJLyndon B. Johnson Space Center,

Houston, TX, Spatiotemporal Neural Networks

Yashvant Jani and Robert N. Lea, NASA/Lyndon B. Johnson Space Center,

Houston, TX, Fuzzy Logic in Autonomous Spacecraft Operations

Kumpati (Bob) S. Narendra, Yale University, New Haven, CT, Identificstion and

Control of Dynamical Systems using Neural Networks

Jacob Barhen, Center for Space Microelectronics Technology, Jet Propulsion

Laboratory, Pasadena, CA, Non-Lipschitzian Dynamics

11:30-12:00

Dan Greenwood, Netrologic, San Diego, CA, Diagnosis and Failure Prediction of

the Space Shuttle Main Engine

Paul Werbos, National Science Foundation, Neural Nets for Control and the Link to

Fuzzy Logic

Break

C.C. Lee, University of California at Berkeley, Berkeley, CA, An Intelligent Control

System for Dynamic Processes

Ronald Yager, Machine Intelligence Institute, Iona College, New Rochelle, NY, A

Neural Network Based Fuzzy Logic Controller

Sankar K. Pal, NASAJLyndon B. Johnson Space Center, Houston, TX and Indian
Statistical Institute, Calcutta, India, Fuzzy Geometry, Entropy and Image

Information

Break

Enrique Ruspini, Stanford Research Institute, Menlo Park, CA, The Semantics of

Fuzzy Logic

Robert Dawes, Martingale Research Corporation, Identification, Estimation and

Control of Dynamical Systems with the Parametric Avalanche Neural Network

ylt

CONTENTS

VOLUME II

An Architecture for Designing Fuzzy Logic Controllers Using Neural Networks 1

An Overview of the Neuron Ring Model .. 31

A Space - Time Neural Network .. 63

Fuzzy Logic in Autonomous Orbital Operations 81

Identification and Control of Dynamical Systems Using Neural Networks 111

(Paper not provided by publication date)

Non-Lipschitzian Dynamics .. 113

(Paper not provided by publication date)

Space Shuttle Main Engine Fault Detection Using Neural Networks 115

Neurocontrol and Fuzzy Logic: Connections and Designs 153

An Intelligent Control Based on Fuzzy Logic and Neural Networks 197

An Neural Network Based Fuzzy Logic Controller 209

(Paper not provided by publication date)

Fuzzy Geometry, Entropy and Image Information 211

The Semantics of Fuzzy Logic .. 233

Identification, Estimation and Control of Dynamical Systems with the Parametric
Avalanche Neural Network ... 271

(Paper not provided by publication date)

VI_I

CONTENTS

VOLUME I

Neural Control Systems ..

(Paper not provided by publication date)

Fuzzy Associative Memories ...

Neural Network Representation and Learning of Mappings and their Derivatives

Impact of Application of Fuzzy Theory to Industry

(Paper not provided by publication date)

Time-sweeping Mode Fuzzy Computer Hardware System -- Forward and

Backward Fuzzy Inference Engine .. ,.

(Paper not provided by publication date)

The Simplification of Fuzzy Control Algorithm and Hardware Implementation

3

59

91

93

95

PANEL:
PANEL MODERATOR:

PANEL MEMBERS:

Fuzzy Sets, Neural Networks, and Intelligent Control
Lotfi Zadeh, University of California at Berkeley

Bernard Widrow, Stanford University

Bart Kosko, University of Southern California

Masaki Togai, Togai Infralogic Corporation

Takeshi Yamakawa, Kyushu Institute of Technology

P. Z. Wang, National University of Singapore
Hal White, University of California, San Diego

Elie Sanchez, Neural and Fuzzy Systems Institute,

Marseilles, France

Paul Werbos, National Science Foundation

No papers were presented at this discussion.

Radar Signal Categorization Using a Neural Network

Self-organization and Clustering Algorithms

Single Board System for Fuzzy Inference ..

Learning Control of Inverted Pendulum System by Neural Network

Driven Fuzzy Reasoning ...

Solution of Inverse Problem of Fuzzy Relational Equation by Using

Perceptron Model ...

Overview of LIFE (Laboratory for International Fuzzy Engineering) Research

(Pape.r not provided by publication date)

107

143

159

169

183

199

ix

ExperimentsonNeuralNetworkArchitecturesfor FuzzyLogic 201

Using Fuzzy Logic to Integrate Neural Networks and Knowledge-based Systems 217

NeuralControlSystems

(Papernotprovidedbypublicationdate.)

In" Kosko, B., NEURAL NETWORKS AND FUZZY SYSTEMS, Prentice-Hall, 1990

N91-21779

CHAPTER 17

FUZZY ASSOCIATIVE MEMORIES

Fuzzy Systems as Between-Cube Mappings

In Chapter 16, we introduced continuous or fuzzy sets as points in the unit hypercube

I '_ = [0, 1]n. Within the cube we were interested in the distance between points. This led

to measures of the size and fuzziness of a fuzzy set and, more fundamentally, to a measure

of how much one fuzzy set is a subset of another fuzzy set. This within-cube theory directly

extends to the continuous case where the space X is a subset of R '_ or, in general, where

X is a subset of products of real or comple× spaces.

The next step is to consider mappings between fuzzy cubes. This level of abstraction

provides a s.urprising and fruitful alternative to the propositional and predicate-calculus

reasoning teclmiques used in artificial-intelligence (AI) expert systems. It allows us to

reason with sets instead of propositions.

The fuzzy set framework is numerical and multidimensional. The AI framework is

symbolic and one-dimensional, with usually only bivalent expert "rules" or propositions

allowed. Both frameworks can encode structured knowledge in linguistic form. But the

fuzzy approach translates the structured knowledge into a flexible numerical framework

and processes it in a manner that resembles neural network processing. The nume,'icai

fi'amework also allows fuzzy systems to be adaptively inferred and modified, perhaps with

neural or statistical teclllliques, directly from problem (lomain sample data.

3

Between-cube theory is fuzzy systems theory. A fuzzy set is a point in a cube. A

fuzzy §ystem is a mapping between cubes. A fuzzy system S maps fuzzy sets to fuzzy

sets. Thus a fuzzy system S is a transformation S : i '_ _ I p. The n-dimensional

unit hypercube I n houses all the fuzzy subsets of the domain space, or input universe of

discourse, X = {xl,..., Xn}. I p houses all the fuzzy subsets of the range space, or output

universe of discourse, Y = {yl,..-, yp}. X and Y can also be subsets of R n and R p. Then

the fuzzy power sets F(2 x) and F(2 r) replace I n and I p.

In general a fuzzy system S maps families of fuzzy sets to families of fuzzy sets, thus

S : I nl x... ×I '_ ---* I pl ×...× I p'. Here too we can extend the definition of a

fuzzy system to allow arbitrary products of arbitrary mathematical spaces to serve as the

domain or range spaces of the fuzzy sets.

(A technical comment is in order for sake of historical clarification. A tenet, perhaps

the defining tenet, of the classical theory [Dubois, 1980] of fuzzy sets as functions concerns

the fuzzy extension of any mathematical function. This tenet holds that any function

f : X --_ Y that maps points in X to points in Y can be extended to map the fuzzy

subsets of X to the fuzzy subsets of Y. The so-called extension principle is used to define

the set-function f : F(2 x) --* F(2Y), where F(2 x) is the fuzzy power set of X, the set

of all fuzzy subsets of X. The formal definition of the extension principle is complicated.

The key idea is a supremum of pairwise minima. Unfortunately, the extension principle

achieves generality at the price of triviality. One can show [Kosko, 1986a-87] that in general

the extension principle extends functions to fuzzy sets by stripping the fuzzy sets of their

fuzziness, mapping the fuzzy sets into bit vectors of nearly all Is. This shortcoming,

combined with the tendency of the extension-principle framework to push fuzzy theory

into largely inaccessible regions of abstract mathematics, led in part to the development

of the alternative sets-as-points geometric framework of fuzzy theory.)

We shall focus on fuzzy systems S : I n _ I p that map balls of fuzzy sets in I n to

balls of fuzzy sets in I p. These continuous fuzzy systems behave as associative memories.

They map close inputs to close outputs. We shall refer to them as fuzzy associative

memories, or FAMs.

The simplest FAM encodes the FAM rule or association (Ai, Bi), which associates

4

the p-dimensional fuzzy set Bi with the n-dimensional fuzzy set Ai. These minimal FAMs

essentially map one ball in 1" to one ball in I p. They are comparable to simple neural

networks. But the minimal FAMs need not be adaptively trained. As discussed below,

structured knowledge of the form "If traffic is heavy in this direction, then keep the stop

light green longer" can be directly encoded in a Hebbian-style FAM matrix. In practice

we can eliminate even this matrix. In its place the user encodes the fuzzy-set association

(HEAVY, LONGER) as a single linguistic entry in a FAM bank matrix.

In general a FAM system F : 1" _ I p encodes and processes in parallel a FAM

bank of m FAM rules (A_, B1),..., (A,n, B,,,). Each input A to the FAM system activates

each stored FAM rule to different degree. The minimal FAM that stores (mi, Bi) maps

input A to B_, a partially activated version of Bi. The more A resembles Ai, the more B_

resembles Bi. The corresponding output fuzzy set B combines these partially activated

fuzzy sets B_,..., B'. In the simplest case B is a weighted average of the partially activated

sets:

B = ,

where wi reflects the credibility, frequency, or strength of the fuzzy association (Ai, Bi). In

practice we usually "defuzzify" the output waveform B to a single numerical value yj in Y

by computing the fuzzy centroid of B with respect to the output universe of discourse Y.

More general still, a FAM system encodes a bank of compound FAM rules that associate

multiple output or consequent fuzzy sets B_,..., B_' with multiple input or antecedent fuzzy

sets A_,..., A_'. We can treat compound FAM rules as compound linguistic conditionals.

Structured knowledge can then be naturally, and in many cases easily, obtained. We

combine antecedent and consequent sets with logical conjunction, disjunction, or negation.

For instance, we would interpret the compound association (A _, AS; B) linguistically as

the compound conditional "IF X 1 is A a AND X 2 is A 2 , THEN Y is B" if the comma in

the fuzzy association (A 1, A2; B) stood for conjunction instead of, say, disjunction.

We specify in advance the numerical universes of discourse X 1, X 2, and Y. For each

universe of discourse X, we specify an appropriate library of fuzzy set values, A_,..., A_.

Contiguous fuzzy sets in a library overlap. In principle a neural network can estimate these

libraries of fuzzy sets. In practice this is usually unnecessary.The library sets represent

a weighted, though overlapping,quantization of the input spaceX. A different library of

fuzzy sets similarly quantizes the output spac e Y. Once the library of fuzzy sets is defined,

we construct the FA M by choosing appropriate combinations of input and output fuzzy

sets. We can use adaptive techniques to make, assist, or modify these choices.

An adaptive FAM (AFAM) is a time-varying FAM system. System parameters grad-

ually change as the FAM system samples and processes data. Below we discuss how neural

network algorithms can adaptively infer FAM rules from training data. In principle learn-

ing can modify other FAM system components, such as the libraries of fuzzy sets or the

FAM-rule weights wi.

Below we propose and illustrate an unsupervised adaptive clustering scheme, based on

competitive learning, for "blindly" generating and refining the bank of FAM rules. In some

cases we can use supervised learning techniques, though we need additional information

to accurately generate error estimates.

FUZZY AND NEURAL FUNCTION ESTIMATORS

Neural and fuzzy systems estimate sampled functions and behave as associative mem-

ories. They share a key advantage over traditional statistical-estimation and adaptive-

control approaches to function estimation. They are model-free estimators. Neural and

fuzzy systems estimate a function without requiring a mathematical description of how the

output functionally depends on the input. They "learn from example." More precisely,

they learn from samples.

Both approaches are numerical, can be partially described with theorems, and admit an

algorithmic characterization that favors silicon and optical implementation. These prop-

erties distinguish neural and fuzzy approaches from the symbolic processing approaches of

artificial intelligence.

Neural and fuzzy systems differ in how they estimate sampled functions. They differ

in the kind of samples used, how they represent and store those samples, and how they

associative]y "inference" or map inputs to outputs.

These differences appear during system construction. The neural approach requires

the specification of a nonlinear dynamical system, usually feedforward, the acquisition of

a sufficiently representative set of numerical training samples, and the encoding of those

training samples in the dynamical system by repeated learning cycles. The fuzzy system

requires only that a linguistic "rule matrix" be partially filled in. This task is markedly

simpler than designing and training a neural network. Once we construct the systems, we

can present the same numerical inputs to either system. The outputs will be in the same

numerical space of alternatives. So both systems correspond to a surface or manifold in

the input-output product space X × Y. We present examples of these surfaces in Chapters

18 and 19.

Which system, neural or fuzzy, is more appropriate for a particular problem depends on

the nature of the problem and the availability of numerical and structured data. To date

fuzzy techniques have been most successfully applied to control problems. These problems

often permit comparison with standard control-theoretic and expert-system approaches.

Neural networks so far seem best applied to ill-defined two-class pattern recognition prob-

lems (defective or nondefective, bomb or not, etc.). The application of both approaches to

new problem areas is just beginning, amid varying amounts of enthusiasm and scepticism.

Fuzzy systems estimate functions with fuzzy set samples (Ai, Bi). Neural systems use

numerical point samples (xi, yi). Both kinds of samples are from the input-output product

space X ×)). Figure 17.1 illustrates the geometry of fuzzy-set and numerical-point samples

taken from the function f: X --_ Y.

The fuzzy-set association (Ai, Bi) is sometimes called a "rule." This is misleading

since reasoning with sets is not the same as reasoning with propositions. Reasoning with

sets is harder. Sets are multidimensional, and associations are housed in matrices, not

conditionals. We must take care how we define each term and operation. We shall refer to

the antecedent term Ai in the fuzzy association (A;, Bi) as the input associant and the

consequentterm Bi as the output associant.

t

FIGURE 17.1 Function f maps domain X to range Y. In the first illustra-

tion we use several numerical point samples (xi, yl) to estimate f: X ----* Y.

]n the second case we use only a few fuzzy subsets Ai of X and Bi of Y. The

fuzzy association (Ai, Bi) represents system structure, as an adaptive cluster-

ing algorithm might infer or as an expert might articulate. In practice there are

8

usually fewer different output associants or "rule" consequents Bi than input

associants or antecedents Ai.

The fuzzy-set sample (Ai, Bi) encodes structure. It represents a mapping itself, a min-

imal fuzzy association of part of the output space with part of the input space. In practice

this resembles a meta-rule---IF Ai, THEN Bi--the type of structured linguistic rule an ex-

pert might articulate to build an expert-system "knowledge base". The association might

also be the result of an adaptive clustering algorithm.

Consider a fuzzy association that might be used in the intelligent control of a traffic

light: "If the traffic is heavy in this direction, then keep the light green longer." The

fuzzy association is (HEAVY, LONGER). Another fuzzy association might be (LIGHT,

SHORTER). The fuzzy system encodes each linguistic association or "rule" in a numerical

fuzzy associative memory (FAM) mapping. The FAM then numerically processes numerical

input data. A measured description of traffic density (e.g., 150 cars per unit road surface

area) then corresponds to a unique numerical output (e.g., 3 seconds), the "recalled"

output.

The degree to which a particular measurement of traffic density is heavy depends on

how we define the fuzzy set of heavy traffic. The definition may be obtained from statistical

or neural clustering of historical data or from pooling the responses of experts. In practice

the fuzzy engineer and the problem domain expert agree on one of many possible libraries

of fuzzy set definitions for the variables in question.

The degree to which the traffic light is kept green longer depends on the degree to

which the measurement is heavy. In the simplest case the two degrees are the same. In

general they differ. In actual fuzzy systems the output control variables--in this case the

single variable green light duration--depend on many FAM rule antecedents or associants

that are activated to different degrees by incoming data.

Neural vs. Fuzzy Representation of Structured Knowledge

The functional distinction between how fuzzy and neural systems differ begins with

how they represent structured knowledge. How would a neural network encode the same

associative information? How would a neural network encode the structured knowledge

"If the traffic is heavy in this direction, then keep the light green longer"?

The simplest method is to encode two associated numerical vectors. One vector rep-

resents the input associant HEAVY. The other vector represents the output associant

LONGER. But this is too simple. For the neural network's fault tolerance now works

to its disadvantage. The network tends to reconstruct partial inputs to complete sample

inputs. It erases the desired partial degrees of activation. If an input is close to Ai, the

output will tend to be Bi. If the output is distant from Ai, the output will tend to be some

other sampled output vector or a spurious output altogether.

A better neural approach is to encode a mapping from the heavy-traffic subspace to

the longer-time subspace. Then the neural network needs a representative sample set to

capture this structure. Statistical networks, such as adaptive vector quantizers, may need

thousands of statistically representative samples. Feedforward multi-layer neural networks

trained with the backpropagation algorithm may need hundreds of representative numerical

input-output pairs and may need to recycle these samples tens of thousands of times in

the learning process.

The neural approach suffers a deeper problem than just the computational burden of

training. What does it encode? How do we know the network encodes the original struc-

ture? What does it recall? There is no natural inferential audit trail. System nonlinearities

wash it away. Unlike an expert system, we do not know which inferential paths the network

uses to reach a given output or even which inferential paths exist. There is only a system of

synchronous or asynchronous nonlinear functions. Unlike, say, the adaptive Kalman filter,

we cannot appeal to a postulated mathematical model of how the output state depends on

the input state. Model-free estimation is, after all, the central computational advantage

of neural networks. The cost is system inscrutability.

_0

We are left with an unstructured computational black box. We do not know what the

neural network encodedduring training or what it will encodeor forget in further training.

(For competitive adaptive vector quantizerswe do know that sample-spacecentroids are

asymptotically estimated.) We can characterizethe neural network's behavior only by

exhaustively passingall inputs through the black box and recording the recalled 6utputs.

The characterization may be in terms of a summaryscalar like mean-squarederror,

This black-box characterization of the network's behavior involves a computational

dilemma. On the one hand, for most problems the number of input-output cases we need

to check is computationally prohibitive. On the other, when the number of input-output

cases is tractable, we may as well store these pairs and appeal to them directly, and without

error, as a look-up table. In the first case the neural network is unreliable. In the second

case it is unnecessary.

A further problem is sample generation. Where did the original numerical point samples

come from? Was an expert asked to give numbers? How reliable are such numerical vectors,

especially when the expert feels most comfortable giving the original linguistic data? This

procedure seems at most as reliable as the expert-system method of asking an expert to

give condition-action rules with numerical uncertainty weights.

Statistical neural estimators require a "statistically representative" sample set. We may

need to randomly "create" these samples from an initial small sample set by bootstrap tech-

niques or by random-number generation of points clustered near the original samples. Both

sample-augmentation procedures assume that the initial sample set sufficiently represents

the underlying probability distribution. The problem of where the original sample set

comes from remains. The fuzziness of the notion "statistically representative" compounds

the problem. In general we do not know in advance how well a given sample set reflects an

unknown underlying distribution of points. Indeed when the network is adapting on-line,

we know only past samples. The remainder of the sample set is in the unsampled future.

In contrast, fuzzy systems directly encode the linguistic sample (HEAVY, LONGER) in

a dedicated numerical matrix. The default encoding technique is the fuzzy Hebb procedure

discussed below. For practical problems, as mentioned above, the numerical matrix need

not be stored. Indeed it need not even be formed. Certain numerical inputs permit this

11

simplification, as we shall seebelow. In general we describe inputs by an uncertainty

distribution, probabilistic or fuzzy. Then we must usethe entire matrix.

For instance, if a heavy traffic input is simply the number 150, we can omit the FAM

matrix. But if the input is a Gaussian curve with mean 150, then in principle we must

process the vector input with a FAM matrix. (In practice we might use only the mean.)

This difference is explained below. The dimensions of the linguistic FAM bank matrix

are usually small. The dimensions reflect the quantization levels of the input and output

spaces.

The fuzzy approach combines the purely numerical approaches of neural networks and

mathematical modeling with the symbolic, structure-rich approaches of artificial intelli-

gence. We acquire knowledge symbolically--or numerically if we use adaptive techniques

--but represent it numerically. We also process data numerically. Adaptive FAM rules

correspond to common-sense, often non-articulated, behavioral rules that improve with

experience.

We can acquire structured expertise in the fuzzy terminology of the knowledge source,

the "expert." This requires little or no force-fitting. Such is the expressive power of

fuzziness. Yet in the numerical domain we can prove theorems and design hardware.

This approach does not abandon neural network techniques. Instead, it limits them to

unstructured parameter and state estimation, pattern recognition, and cluster formation.

The system architecture remains fuzzy, though perhaps adaptively so. In the same spirit,

no one believes that the brain is a single unstructured neural network.

FAMS as Mappings

Fuzzy associative memories (FAMs) are transformations. FAMs map fuzzy sets

to fuzzy sets. They map unit cubes to unit cubes. This is evident in Figure 17.1. In

the simplest case the FAM consists of a single association, such as (HEAVY, LONGER).

In general the FAM consists of a bank of different FAM associations. Each association

is represented by a different numerical FAM matrix, or a different entry in a FAM-bank

]2

matrix. These matrices are not combined as with neural network associativememory

(outer-product) matrices. (An exception is the fuzz v cognitive map [Kosko, 1988; Taber,

1987, 1990].) The matrices are stored separately but accessed in parallel.

We begin with single-association FAMs. For concreteness let the fuzzy-set pair (A, B)

encode the traffic-control association (HEAVY, LIGHT). We quantize the domain of traffic

density to the n numerical variables Xl, x2, ..., xn. We quantize the range of green-light

duration to the p variables Yl, y2, --., Yp- The elements xi and Y.i belong respectively to

the ground sets X = {xl, ..., xn} and Y = {yl, ..., Yp}. xl might represent zero

traffic density, yp might represent 10 seconds.

The fuzzy sets A and B are fuzzy subsets of X and Y. So A is point in the n-

dimensional unit hypercube I '_ = [0, 1]n, and B is a point in the p-dimensionM fuzzy

cube I p. Equivalently, we can think of A and B as membership functions ma and ms

mapping the elements xi of X and yj of Y to degrees of membership in [0, 1]. The

membership values, or fit (fuzzy unit) values, indicate how much xi belongs to or fits in

subset A, and how much yj belongs to B. We describe this with the abstract functions

ma : X _ [0, 1] and mB: Y --4 [0, 1]. We shall freely view sets both as functions

and as points.

The geometric sets-as-points interpretation of fuzzy sets A and B as points in unit

cubes allows a natural vector representation. We represent A and B by the numerical fit

vectors A = (al, ..., an) and B = (bl, ..., by), where ai = rna(xi) and bj = mB(yj).

We can interpret the identifications A = HEAVY and B = LONGER to suit the problem

at hand. Intuitively the ai values should increase as the index i increases, perhaps ap-

proximating a sigmoid membership function. Figure 17.2 illustrates three possible fuzzy

subsets of the universe of discourse X.

3

•

0, t

xl = 0 50 100 150 x. = 200

TRAFFIC DENSITY

FIGURE 17.2 Three possible fuzzy subsets of traffic density space X. Each

fuzzy sample corresponds to such a Subset. We draw the fuzzy sets as contin-

uous membership functions. In practice membership values are quantized. So

the sets are points in the unit hypercube I". Each fuzzy sample corresponds

to such a subset.

Fuzzy Vector-Matrix Multiplication: Max-Min Composition

Fuzzy vector-matrix multiplication is similar to classical vector-matrix multiplication.

We replace pairwise multiplications with pairwise minima. We replace column (row) sums

with column (row) maxima. We denote this fuzzy vector-matrix composition relation,

or the max-min composition relation [Klir, 1988], by the composition operator %'. For

row fit vectors A and B and fuzzy n-by-p matrix M (a point in I"×P):

AoM = B , (1)

14

where we compute the "recalled" component bj by taking the fuzzy inner product of fit

vector A with the jth column of M:

bj = max min(ai, mij) (2)
l<i<n

Suppose we compose the fit vector A = (.3.4.8 1) with the fuzzy matrix M given by

m

.2 .8 .7

.7 .6 .6

.8 .1 .5

0 .2 .3

Then we compute the "recalled" fit vector B = A o M component-wise as

b_ = max{min(.3, .2), min(.4, .7), min(.S, .8), rain(l, 0)}

= max(.2, .4, .8, O)

.8 ,

b2 = max(.3, .4, .1, .2)

.4 ,

b3 ---- max(.3, .4, .5, .3)

= .5

So B = (.8.4 .5). If we somehow encoded (A, B) in the FAM matrix M, we would say

that the FAM system exhibits perfect recall in the forward direction.

The neural interpretation of max-min composition is that each neuron in field Fr"

(or field FB) generates its signal/activation value by fuzzy linear composition. Passing

15

information back through M T allows us to interpret the fuzzy system as a bidirectional as-

sociative memory (BAM). The Bidirectional FAM Theorems below characterize successful

BAM recall for fuzzy correlation or Hebbian learning.

For completeness we also mention the max-product composition operator, which

replaces minimum with product in (2):

bj = max ai mij
l<i<n

In the fuzzy literature this composition operator is often confused with the fuzzy correlation

encoding scheme discussed below. Max-product composition is a method for "multiply-

ing" fuzzy matrices or vectors. Fnzzy correlation, which also uses pairwise products of

fit values, is a method for constructing fuzzy matrices. In practice, and in the following

discussion, we use only max-min composition.

FUZZY HEBB FAMs

Most fuzzy systems found in applications are fuzzy Hebb FAMs [Kosko, 1986b]. They

are fuzzy systems S : I" _ I p constructed in a simple neural-like manner. As discussed

in Chapter 4, in neural network theory we interpret the classical Hebbian hypothesis of

correlation synaptic learning [Hebb, 1949] as unsupervised learning with the signal product

s,

m,j = --m j + Sj(yj) (3)

For a given pair of bipolar vectors (X, Y), the neural interpretation gives the outer-product

correlation matrix

M = X T Y (4)

The fuzzy Hebb matrix is similarly defined pointwise by the minimum of the "sig-

nals" ai and bj, an encoding scheme we shall call correlation-minimum encoding:

16

mij = min(ai, bj)

given in matrix notation as the fuzzy outer-product

(5)

M : A T o B (6)

Mamdani [1977] and Togai [1986] independently arrived at the fuzzy Hebbian prescrip-

tion (5) as a multi-valued logical-implication operator: truth(ai --* b,) = min(a,,bj).

The rain operator, though, is a symmetric truth operator. So it does not properly gen-

eralize the classical implication P _ Q, which is false if and only if the antecedent P

is true and the consequent Q is false, t(P) = 1 and t(Q) = 0. In contrast, a like desire

to define a "conditional possibility" matrix pointwise with continuous implication values

led Zadeh [1983] to choose the Lukasiewicz implication operator: rnij = truth(a/

bj) = min(1, 1 - ai + bj). The problem with the Lukasiewicz operator is that it usually

unity. For rain(l, 1 - ai + b_) < 1 iff a_ > bj. Most entries of the resulting matrix M

are unity or near unity. This ignores the information in the association (A, B). So A r o M

tends to equal the largest fit value a_ for any system input A'.

We construct an autoassociative fuzzy Hebb FAM matrix by encoding the redundant

pair (A, A) in (6), as the fuzzy auto-correlation matrix:

M = A T o A (7)

In the previous example the matrix M was such that the input A = (.3 .4 .8 1)

recalled fit vector B = (.8 .4 .5) upon max-min composition: A o M = B, Will

B still be recalled if we replace the original matrix M with the fuzzy Hebb matrix found

with (6)? Substituting A and B in (6) gives

M=AToB= 131 i.3.3.3).4 .4 .4 .4
o (.8 ,4 .5) =

.8 .8 .4 .5

1 .8 .4 .5

17

This fuzzy Hebb matrix M illustrates two key properties. First, the ith row of M is

the pairwise minimum of ai and the output associant B. Symmetrically, the jth column

of M is the pairwise minimum of bj and the input associant A:

M

: [al AB
an AB

- [bx ^ AT I ..,

(8)

where the cap operator denotes pairwise minimum: ai A b.i

ai A B indicates component-wise minimum:

I ^ AT] , (9)

= min(ai,bj). The term

ai ^ B = (ai ^ bl,...,ai A b,,) , (10)

Hence if some ak = 1, then the kth row of M is B. If some bt = 1, the/th column of

M is A. More generally, if some ak is at least as large as every bj, then the kth row of the

fuzzy Hebb matrix M is B.

Second, the third and fourth columns of M are just the fit vector B. Yet no column

is A. This allows perfect recall in the forward direction, A o M = B, but no_ in the

backward direction, B o M T _ A:

A o M = (.8 .4 .5) = B ,

B o M T = (.3 .4 .8 .8) = A' C A

A' is a proper subset of A • A' _ A and S(A', A) = 1, where S measures the degree of

subsethood of A' in A, as discussed in Chapter 16. In other words, a_ < ai for each i and

a t < ak for at least one k. The Bidirectional FAM Theorems below show that this is a

general property: If B' = A o M differs from B, then B' is a proper subset of B. Hence

fuzzy subsets truly map to fuzzy subsets.

18

The Bidirectional FAM Theorem for Correlation-Minimum En-

coding

Analysis of FAM recall uses the traditional [Klir, 1988] fuzzy set notions of the height

and the normality of fuzzy sets. The height H(A) of fuzzy set A is the maximum fit value

of A:

H(A) = max ai
l<i<n

A fuzzy set is normal if H(A) = 1, if at least one fit value ak is maximal: ak = 1. In

practice fuzzy sets are usually normal. We can extend a nonnormal fuzzy set to a normal

fuzzy set by adding a dummy dimension with corresponding fit value a,+l = 1.

Recall accuracy in fuzzy Hebb FAMs constructed with correlation-minimum encoding

depends on the heights H(A) and H(B). Normal fuzzy sets exhibit perfect recall. Indeed

(A,B) is a bidirectional fixed point--A o M = Band B o M T = A--if and only if

H(A) = H(B), which always holds if A and B are normal. This is the content of the

Bidirectional FAM Theorem [Kosko, 1986a] for correlation-minimum encoding. Below we

present a similar theorem for correlation-product encoding.

Correlation-Minimum Bidirectional FAM Theorem. If M = A T o B, then

(i) A o M = B iff H(A) >_ H(B)

(ii) B o M T = A iff H(B) >_ H(A)

(iii) A' o M C B for anyA'

(iv) B' o M T C A for any B'

Proof. Observe that the height H(A) is the fuzzy norm of A:

19

Then

o -AT = max ai A ai "-- max ai = H(A)A
i t

A o M - A o (A T 0 B)

= (A o A T) o B

= H(A) o B

-- H(A) A B

So H(A) A B = B iff H(A) > H(B), establishing (i). Now suppose A' is an arbitrary

fit vector in I". Then

A' o M = (A' o A T) o B

= (A' o A T) A B ,

which establishes (iii). A similar argument using M T = B T o A establishes (ii) and (iv).

Q.E.D.

The equality A o A T = H(A) implies an immediate corollary of the Bidirectional

FAM Theorem. Supersets A' D A behave the same as the encoded input associant

A: A I o M = BifA o M = B. FuzzyHebb FAMs ignore the information in the

difference A' - A, when A' C A'.

Correlation-Product Encoding

An alternative fuzzy Hebbian encoding scheme is correlation-product encoding.

The standard mathematical outer product of the fit vectors A and B forms the FAM

matrix M. This is given pointwise as

2O

z

and in matrix notation as

rrtij = ai bj , (11)

M = A T B (12)

So the ith row of M is just the fit-scaled fuzzy set al B, and the jth column of M is bj AT:

L -Z-fJ
= [bl AT I ... Ibm A T} , (14)

IfA = (.3.4.8 1) and B = (.8.4.5) asabove, we encode the FAM rule (A, B) with

correlation-product in the following matrix M:

M

.24 .12 .15

.32 .16 .2

.64 .32 .4

.8 .4 .5

Note that irA' = (0 00 1), then A' o M = B. The output associant Bis recalled

to maximal degree. IfA' = (1000),then A' o M = (.24.12.15). The output Bis

recalled only to degree .3.

Correlation-minimum encoding produces a matrix of clipped B sets. Correlation-

product encoding produces a matrix of scaled B sets. In membership function plots,

the scaled fuzzy sets ai B all have the same shape as B. The clipped fuzzy sets ai ^ B

are largely flat. In this sense correlation-product encoding preserves more information

than correlation-minimum encoding, an important point in fuzzy applications when out-

put fuzzy sets are added together as in equation (17) below. In the fuzzy-applications

literature this often leads to the selection of correlation-product encoding.

21

Unfortunately, in the fuzzy-applications literature the correlation-product encoding

scheme is invariably confused with the max-product composition method of recall or infer-

ence, as mentioned above. This confusion is so widespread it warrants formal clarification.

In practice, and in the fuzzy control applications developed in Chapters 18 and 19, the

input fuzzy set A' is a binary vector with one 1 and all other elements 0--a row of the

n-by-n identity matrix. A' represents the occurrence of the crisp measurement datum xi,

such as a traffic density value of 30. When applied to the encoded FAM rule (A, B), the

measurement value xi activates A to degree ai. This is part of the max-min composition

recall process, for A' o M = (A' o A T) o B = ai A B or ai JB depending on whether

correlation-minimum or correlation-product encoding is used. We activate or "fire" the

output associant B of the "rule" to degree ai.

Since the values ai are binary, ai mij = ai A mij. So the max-min and max-

product composition operators coincide. We avoid this confusion by referring to both

the recall process and the correlation encoding scheme as correlation-minimum infer-

ence when correlation-minimum encoding is combined with max-min composition, and

as correlation-product inference when correlation-product encoding is combined with

max-min composition.

We now prove the correlation-product version of the Bidirectional FAM Theorem.

Correlation-Product Bidirectional FAM Theorem.

are non-null fit vectors, then

If M = A T B and A and B

(i) A o M = B iff H(A) = 1

(ii) B o M T = A iff H(B) = 1

(iii) A' o M C B for anyA' .

(iv) B' o M T C A for anyB'

22

Proof.

AoM : A o (A T B)

= (A o A T) B

= H(A) B

Since B is not the empty set, H(A) B = B iff H(A) = 1, establishing(i). (A o M = B

holds trivially if B is the empty set.) For an arbitrary fit vector A' in I'_:

A'oM

since A' o A <_ H(A), establishing (iii).

M T = B T A. Q.E.D.

= (A' oAT) B

C H(A) B

C B ,

(ii) and (iv) are proved similarly using

Superimposing FAM Rules

Now suppose we have m FAM rules or associations (A1, B1),..., (Am, Bin). The fuzzy

Hebb encoding scheme (6) leads to m FAM matrices M1,..., M,,, to encode the associa-

tions. The natural neural-network temptation is to add, or in this case maximum, the m

matrices pointwise to distributively encode the associations in a single matrix M:

M = max Mk (15)
l<k<m

This superimposition scheme fails for fllzzy Hebbian encoding. The superimposed result

tends to be the matrix Aro B, where A and B are the pointwise maximum of the respective

m fit vectors A_ and Bk. We can see this from the pointwise inequality

23

max min(aik, b_)< min(max a_, max b_) (16)
l<k<rn -- l<k<m l<k<rn

Inequality (16) tends to hold with equality as m increases since all maximum terms ap-

proach unity. We lose the information in the rn associations (Ak, Bk).

The fuzzy approach to the superimposition problem is to additively superimpose the m

recalled vectors B_ instead of the fuzzy Hebb matrices Mk. B_ and Mk are given by

A o Mk = A o (A T o Bk)

for any fit-vector input A applied in parallel to the bank of FAM rules (Ak, Bk). This

requires separately storing the m associations (A_, Bk), as if each association in the FAM

bank were a separate feedforward neural network.

Separate storage of FAM associations is costly but provides an "audit trail" of the

FAM inference procedure. The user can directly determine which FAM rules contributed

how much membership activation to a "concluded" output. Separate storage also pro-

vides knowledge-base modularity. The user can add or delete FAM-structured knowledge

without disturbing stored knowledge. Both of these benefits are advantages over a pure

neural-network architecture for encoding the same associations (Ak, Bk). Of course we can

use neural networks exogenously to estimate, or even individually house, the associations

(Ak, Bk).

Separate storage of FAM rules brings out another distinction between FAM systems

and neural networks. A fit-vector input A activates all the FAM rules (Ak, Bk) in parallel

but to different degrees. If A only partially "satisfies" the antecedent associant Ak, the

consequent associant Bk is only partially activated. If A does not satisfy Ak at all, Bk does

not activate at all. B_, is the null vector.

Neural networks behave differently. They try to reconstruct the entire association

(Ak, Bk) when stimulated with A. If A and A_ mismatch severely, a neural network will

24

tend to emit a non-null output B_, perhaps the result of the network dynamical system

falling into a "spurious" attractor in the state space. This may be desirable for metrical

classification problems. It is undesirable for inferential problems and, arguably, for associa-

tive memory problems. When we ask an expert a question outside his field of knowledge,

in many cases it is more prudent for him to give no response than to give an educated,

though wild, guess.

Recalled Outputs and "Defuzzification"

The recalled fit-vector output B is a weighted sum of the individual recalled vectors

N,:

rn

B = _ wk B_ , (17)
k=l

where the nonnegative weight wk summarizes the credibility or strength of the kth FAM

rule (Ak, Bk). The credibility weights wk are immediate candidates for adaptive modifica-

tion. In practice we choose wl = ... = w,_ = 1 as a default.

In principle, though not in practice, the recalled fit-vector output is a normalized sum

of the B_ fit vectors. This keeps the components of B unit-interval valued. We do not

use normalization in practice because we invariably "defuzzify" the output distribution B

to produce a single numerical output, a single value in the output universe of discourse

Y -- {Y!,.--,Yp}- The information in the output waveform B resides largely in the

relative values of the membership degrees.

The simplest defuzzification scheme is to choose that element Ym_x that has maximal

membership in the output fuzzy set B:

m,(ymax) = max rnB(yj) (18)
15j<k

The popular probabilistic methods of maximum-likelihood and maximum-a-posteriori pa-

rameter estimation motivate this maximum-membership defuzzification scheme. The

25

maximum-membership scheme (18) is also computationally light.

There are two fundamental problems with the maximum-membership defuzzification

scheme. First, the mode of the B distribution is not unique. This is especially troublesome

with correlation-minimum encoding, as the representation (8) shows, and somewhat less

troublesome with correlation-product encoding. Since the minimum operator clips off the

top of the Bk fit vectors, the additively combined output fit vector B tends to be flat over

many regions of universe of discourse Y. For continuous membership functions this leads

to infinitely many modes. Even for quantized fuzzy sets, there may be many modes.

In practice we can average multiple modes. For large FAM banks of "independent"

FAM rules, some form of the Central Limit Theorem (whose proof ultimately depends

on Fourier transformability not probability) tends to apply. The waveform B tends to

resemble a Gaussian membership function. So a unique mode tends to emerge. It tends

to emerge with fewer samples if we use c0rrelation-product encoding.

Second, the maximum-membership scheme ignores the information in much of the

waveform B. Again correlation-minimum encoding compounds the problem. In practice

B is often highly asymmetric, even if it is unimodal. Infinitely many output distributions

can share the same mode.

The natural alternative is the fuzzy centroid defuzzification scheme. We directly

compute the real-valued output as a normalized convex combination of fit values, the fuzzy

centroid B of fit-vector B with respect to output space Y:

P

9 = S=' (19)
P

j----I

The fuzzy centroid is unique and uses all the information in the output distribution B. For

symmetric unimodal distributions the mode and fuzzy centroid coincide. In many cases

we must replace the discrete sums in (19) with integrals over continuously infinite spaces.

We show in Chapter 19, though, that for libraries of trapezoidal fuzzy sets we can replace

such a ratio of integrals with a ratio of simple discrete sums.

Note that computing the centroid (19) is the only step in the FAM inference procedure

26

that requiresdivision. All other operations are inner products, pairwise minima, and ad-

ditions. This promises realization in a fuzzy optical processor. Already some form of this

FAM-inference scheme has led to digital [Togai, 1986] and analog [Yamakawa, 1987-88]

VLSI circuitry.

FAM System Architecture

Figure 17.3 schematizes the architecture of the nonlinear FAM system F. Note that F

maps fuzzy sets to fuzzy sets: F(A) -- B. So F is in fact a fuzzy-system transformation

F: I n _ I p. In practice A is a bit vector with one unity value, ai = 1, andallother

fit values zero, aj = 0.

The output fuzzy set B is usually defuzzified with the centroid technique to produce an

exact element yj in the output universe of discourse Y. In effect defuzzification produces

aaq output binary vector O, again with one element 1 and the rest 0s. At this level the FAM

system F maps sets to sets, reducing the fuzzy system F to a mapping between Boolean

cubes, F : {0, 1} n --_ {0, 1} p. In many applications we model X and Y as continuous

universes of discourse. So n and p are quite large. We shall call such systems binary

input-output FAMs.

27

A !

L.

m _ m m m _ w m u _ _ _ w _ l

FAM Rule 1 I

/ FA. R,... 2 • _ I

I
I .. ./
i ° °-/

FAM SYSTEM

OeFU_FE. i_ YJ

FIGURE 17.3 FAM system architecture. The FAM system F maps fuzzy

sets in the unit cube I n to fuzzy sets in the unit cube I p. Binary input fuzzy

sets are often used in practice to model exact input data. In general only an

uncertainty estimate of the system state is available. So A is a proper fuzzy set.

The user can defuzzify output fuzzy set B to yield exact output data, reducing

the FAM system to a mapping between Boolean cubes.

Binary Input-Output FAMs: Inverted Pendulum Example

Binary input-output FAMs (BIOFAMs) are the most popular fuzzy systems for appli-

cations. BIOFAMs map system state-variable data to control data. In the case of traffic

control, a BIOFAM maps traffic densities to green (and red) light durations.

BIOFAMs easily extend to multiple FAM rule antecedents, to mappings from product

cubes to product cubes. There has been little theoretical justification for this extension,

28

aside from Mamdani's [1977] original suggestion to multiply relational matrices. The ex-

tension to multi-antecedent FAM rules is easier applied than formally explained. In the

next section we present a general explanation for dealing with multi-antecedent FAM rules.

First, though, we present the BIOFAM algorithm by illustrating it, and the FAM construc-

tion procedure, on an archetypical control problem.

Consider an inverted pendulum. In particular, consider how to adjust a motor to bal-

ance an inverted pendulum in two dimensions. The inverted pendulum is a classical control

problem. It admits a math-model control solution. This provides a formal benchmark for

BIOFAM pendulum controllers.

There are two state variables and one control variable. The first state variable is the

angle 0 that the pendulum shaft makes with the vertical. Zero angle corresponds to the

vertical position. Positive angles are to the right of the vertical, negative angles to the left.

The second state variable is the angular velocity AO. In practice we approximate the

instantaneous angular velocity AO as the difference between the present angle measurement

Ot and the previous angle measurement Or-l:

AOt = Ot - Or-1

The control variable is the motor current or angular velocity yr. The velocity can also

be positive or negative. We expect that if the pendulum falls to the right, the motor

velocity should be negative to compensate. If the pendulum falls to the left, the motor

velocity should be positive. If the pendulum successfully balances at the vertical, the motor

velocity should be zero.

The real line R is the universe of discourse of the three variables. In practice we

restrict each universe of discourse to a comparatively small interval, such as [-90, 90] for

the pendulum angle, centered about zero.

We can quantize each universe of discourse into five overlapping fuzzy sets. We know

that the system variables can be positive, zero, or negative. We can quantize the magni-

tudes of the system variables finely or coarsely. Suppose we quantize the magnitudes as

small, medium, and large. This leads to seven linguistic fuzzy set values:

29

NL: Negative Large

NM: Negative Medium

NS: Negative Small

ZE: Zero

PS: Positive Small

PM: Positive Medium

PL: Positive Large

For example, 0 is a fuzzy variable that takes NL as a fuzzy set value. Different fuzzy

quantizations of the angle universe of discourse allow the fuzzy variable 0 to assume differ-

ent fuzzy set values. The expressive power of the FAM approach stems from these fuzzy-set

quantizations. In one stroke we reduce system dimensions, and we describe a nonlinear

numerical process with linguistic common-sense terms.

We are not concerned with the exact shape of the fuzzy sets defined on each of the

three universes of discourse. In practice the quantizing fuzzy sets are usually symmetric

triangles or trapezoids centered about representive values. (We can think of such sets as

fuzzy numbers.) The set ZE may be a Gaussian curve for the pendulum angle 0, a triangle

for the angular velocity A0, and a trapezoid for the velocity v. But all the ZE fuzzy sets

will be centered about the numerical value zero, which will have maximum membership in

the set of zero values.

How much should contiguous fuzzy sets overlap? This design issue depends on the

problem at hand. Too much overlap blurs the distinction between the fuzzy set values.

Too little overlap tends to resemble bivalent control, producing overshoot and undershoot.

In Chapter 19 we determine experimentally the following default heuristic for ideal overlap:

Contiguous fuzzy sets in a library should overlap approximately 25%.

FAM rules are triples, such as (NM, Z; PM). They describe how to modify the con-

trol variable for observed values of the pendulum state variables. A FAM rule associates

a motor-velocity fuzzy set value with a pendulum-angle fuzzy set value and an angular-

velocity fuzzy set value. So we can interpret the triple (NM, Z; PM) as the set-level

30

implication

IF the pendulum angle 0 is negative but medium

AND the angular velocity A0 is about zero,

THEN the motor velocity should be positive but medium.

These commonsensical FAM rules are comparatively easy to articulate in natural language.

Consider a terser linguistic version of the same three-antecedent FAM rule:

IF 0 -- NM AND

THEN v = PM.

AO = ZE ,

Even this mild level of formalism may inhibit the knowledge acquisition process. On the

other hand, the still terser FAM triple (NM, ZE; PM) allows knowledge to be acquired

simply by filling in a few entries in a linguistic FAM-bank matrix. In practice this often

allows a working system to be developed in hours, if not minutes.

We specify the pendulum FAM system when we choose a FAM bank of two-antecedent

FAM rules. Perhaps the first FAM rule to choose is the steady-state FAM rule: (ZE, ZE; ZE).

The steady-state FAM rule describes what to do in equilibrium. For the inverted pendulum

we should do nothing.

This is typical of many control problems that require nulling a scalar error measure.

We can control multivariable problems by nulling the norms of the system error vector

and error-velocity vectors, or, better, by directly nulling the individual scalar variables.

(Chapter 19 shows how error hulling can control a realtime target tracking system.) Error

nulling tractably extends the FAM methodology to nonlinear estimation, control, and

decision problems of high dimension.

3!

The pendulum FAM bank is a 7-by-7 matrix witll linguistic fuzzy-set entries. We index

the columns by the seven fuzzy sets that quantize the angle 0 universe of discourse. We

index the rows by the seven fuzzy sets that quantize the angular velocity A0 universe of

discourse.

Each matrix entry is one of seven motor-velocity fuzzy-set values. Since a FAM rule is a

mapping or function, there is exactly one output velocity value for every pair of angle and

angular-velocity values. So the 49 entries in the FAM bank matrix represent the 49 possible

two-antecedent FAM rules. In practice most of the entries are blank. In the adaptive FAM

case discussed below, we adaptively generate the entries from process sample data.

Commonsense dictates the entries in the pendulum FAM bank matrix. Suppose the

pendulum is not changing. So A0 = ZE. If the pendulum is to the right of vertical,

the motor velocity should be negative to compensate. The farther the pendulum is to

the right, the larger the negative motor velocity should be. The motor velocity should

be positive if the pendulum is to the left. So the fourth row of the FAM bank matrix,

which corresponds to AO = ZE, should be the ordinal inverse of the 0 row values. This

assignment includes the steady-state FAM rule (ZE, ZE; ZE).

Now suppose the angle 0 is zero but the pendulum is moving. If the angular velocity is

negative, the pendulum will overshoot to the left. So the motor velocity should be positive

to compensate. If the angular velocity is positive, the motor velocity should be negative.

The greater the angular velocity is in magnitude, the greater the motor velocity should

be in magnitude. So the fourth column of the FAM bank matrix, which corresponds to

0 = ZE, should be the ordinal inverse of the A0 column values. This assignment also

includes the steady-state FAM rule.

Positive 0 values with negative A0 values should produce negative motor velocity values,

since the pendulum is heading toward the vertical. So (PS, NS; NS) is a candidate FAM

rule. Symmetrically, negative 0 values with positive A0 values should produce positive

motor velocity values. So (NS, PS; PS) is another candidate FAM rule.

This gives 15 FAM rules altogether. In practice these rules are more than sufficient to

successfully balance an inverted pendulum. Different, and smaller, subsets of FAM rules

may also successfully balance the pendulum.

32

We can represent the bank of 15 FAM rules as the 7-by-7 linguistic matrix

e

A PS PM PLNL NM NS ZE

NL }

NM_M_ ._.

The BIOFAM system F also admits a geometric interpretation. The set of all possible

input-outpairs (_, AS; F(8, A$)) defines a FAM surface in the input-output product space,

in this case in R z. We plot examples of these control surfaces in Chapters 18 and 19.

The BIOFAM inference procedure activates in parallel the antecedents of all 15 FAM

rules. The binary or pulse nature of inputs picks off single fit values from the quantizing

fuzzy sets. We can use either the correlation-minimum or correlation-product irfferenc-

ing technique. For simplicity we shall illustrate the procedure with correlation-minimum

inferencing.

Suppose the current pendulum angle _ is 15 degrees and the angular velocity AO is

--10. This amounts to passing two bit vectors of one 1 and all else 0 through the BIOFAM

system. What is the corresponding motor velocity value v = F(15,-10)?

Consider first how the input data pair (15, -10) activates steady-state FAM rule (ZE, ZE;

ZE). Suppose we define the antecedent and consequent fuzzy sets for ZE with the trian-

gular fuzzy set membership functions in Figure 17.4. Then the angle datum 15 i_ a zero

angle value to degree .2 : m_E(15) = .2. The angular velocity datum -10 is a zero

33

angular velocity value to degree .5: mza_(-10) = .5.

We combine the antecedent fit values with minimum or maximum according as the

antecedent fuzzy sets are combined with the conjunctive AND or the disjunctive OR.

Intuitively, it should be at least as difficult to satisfy both antecedent conditions as to

satisfy either one separately.

The FAM rule notation (ZE, ZE; ZE) implicitly assumes that antecedent fuzzy sets

are combined conjunctively with AND: So the data satisfy the compound antecedent of

the FAM rule (ZE, ZE; ZE) to degree

min(m_E(15), m_(-10)) = min(.2, .5)

= .2

Clearly this methodology extends to any number of antecedent terms connected with ar-

bitrary logical (set-theoretical) connectives.

The system should now activate the consequent fuzzy set of zero motor velocity values

to degree .2. This is not the same as activating the ZE motor velocity fuzzy set 100% with

probability .2, and certainly not the same as Prob{v = 0} = .2. Instead a deterministic

20% of ZE should result and, according to the additive combination formula (17), should

be added to the final output fuzzy set.

The correlation-minimum inference procedure activates the angular velocity fuzzy set

ZE to degree .2 by taking the pairwise minimum of .2 and the ZE fuzzy set m_E:

min(ra_E(15) ' mz_(_10))a0 ^ m_gE(V) = .2 ^ m_ZE(V)

for all velocity values v. The correlation-product inference procedure would simply multiply

the zero angular velocity fuzzy set by .2 : .2 m)E(V) for all v.

The data similarly activate the FAM rule (PS, ZE; NS) depicted in Figure 17.4. The

angle datum 15 is a small but positive angle value to degree .8. The angular velocity datum

-10 is a zero angular velocity value to degree .5. So the output motor velocity fuzzy set of

small but negative motor velocity values is scaled by .5, the lesser of the two antecedent

fit values:

34

min(m_,s(15) ' mZE(_10))he A rn_NS(V) = .5 A m_NS(V)

for all velocity values v. So the data activate the FAM rule (PS, ZE; NS) to_reater degree

than the steady-state FAM rule (ZE, ZE; ZE) since in this example an angle value of 15

degrees is more a small but positive angle value than a zero angle value.

The data similarly activate the other 13 FAM rules. We combine the resulting minimum-

scaled consequent fuzzy sets according to (17) by summing pointwise. We can then com-

pute the fuzzy centroid with equation (19), with perhaps integrals replacing the discrete

sums, to determine the specific output motor velocity v. In Chapter 19 we show that, for

symmetric fuzzy sets of quantization, the centroid can always be computed exactly with

simple discrete sums even if the fuzzy sets are continuous. In many realtime applications

we must repeat this entire FAM inference procedure hundreds, perhaps thousands, of times

per second. This requires fuzzy VLSI or optical processors.

Figure 17.4 illustrates this equal-weight additive combination procedure for just the

FAM rules (ZE, ZE; ZE) and (PS, ZE; NS). The fuzzy-centroidal motor velocity value

in this case is -3.

35

FAM Rule (PS, NS. NS)

IF 8 - PS AND 68 = ZE,]
J_ ZE THEN V = N$ [N$

÷_ _

ZE

0 15 ÷

O

A0 V

D
÷

FAM Rule (ZE. ZE ; ZE)

IF O=ZE AND ,58 = ZE,ITHEN V=ZE

ZE ZE

;-I0 0 - 0

•'-8 V

FIGURE 17.4 FAM correlation-minimum inference procedure. The FAM

system consists of the two two-antecedent FAM rules (PS, ZE; NS) and

(ZE, ZE; ZE). The input angle datum is 15, and is more a small but pos-

itive angle value than a zero angle value. The input angular velocity datum

is -10, and is only a zero angular velocity value to degree .5. Antecedent fit

values are combined with minimum since the antecedent terms are combined

conjunctively with AND. The combined fit value then scales the consequent

fuzzy set with pairwise minimum. The minimum-scaled output fuzzy sets are

added pointwise. The fuzzy centroid of this output waveform is computed and

yields the system output velocity value -3.

Multi-Antecedent FAM Rules: Decompositional Inference

The BIOFAM inference procedure treats antecedent fuzzy sets a.s if they were propo-

sitions with fuzzy truth values. This is because fuzzy logic corresponds to 1-dimensional

36

fuzzy set theory and because we use binary or exact inputs. We now formally develop the

connection between BIOFAMs and the FAM theory presented earlier.

Consider the compound FAM rule "IF X is A AND Y is B , THEN C is Z,"

or (A, B; C) for short. Let the universes of discourse X, Y, and Z have dimensions n, p,

and q : X = {Xl,...,xn}, Y "-- {Yl,...,Yp}, and Z = {zx,...,zq}. We can directly

extend this framework to multiple antecedent and consequent terms.

In our notation X, Y, and Z are both universes of discourse and fuzzy variables. The

fuzzy variable X can assume the fuzzy set values A1, A2,..., and similarly for the fuzzy

variables Y and Z. When controlling an inverted pendulum, the identification "X is A"

might represent the natural-language description "The pendulum angle is positive but

small."

What is the matrix representation of the FAM rule (A, B; C)? The question is nontriv-

ial since A, B, and C are fuzzy subsets of different universes of discourse, points in different

unit cubes. Their dimensions and interpretations differ. Mamdani [1977] and others have

suggested representing such rules as fuzzy multidimensional relations or arrays. Then the

FAM rule (A, B; C) would be a fuzzy subset of the product space X x Y x Z. This rep-

resentation is not used in practice since only exact inputs are presented to FAM systems

and the BIOFAM procedure applies. If we presented the system with a genuine fuzzy set

input, we would no doubt preprocess the fuzzy set with a centroidal or maximum-fit-value

technique so we could still apply the BIOFAM inference procedure.

We present an alternative representation that decomposes, then recomposes, the FAM

rule (A, B; C) in accord with the FAM inference procedure. This representation allows

neural networks to adaptively estimate, store, and modify the decomposed FAM rules. The

representation requires far less storage than the multidimensional-array representation.

Let the fuzzy Hebb matrices MAC and MBc store the simple FAM associations (A, C)

and (B, C):

MAC = A T o C , (20)

MBc = B T o C (21)

37

The fuzzy Hebbmatrices MAC and MBc split the compound FAM rule (A, B; C). We can

construct the splitting matrices with correlation-product encoding.

Let Ijr = (0... 0 1 0... 0) be an n-dimensional bit vector with ith element 1 and all

other elements 0. I_. is the ith row of the n-by-n identity matrix. Similarly, I_. and Iz_ are

the respective jth and kth rows of the p-by-p and q-by-q identity matrices. The bit vector

I_ represents the occurrence of the exact input xl.

We will call the proposed FAM representation scheme FAM decompositional infer-

ence, in the spirit of the max-min compositional inference scheme discussed above. FAM

decompositional inference decomposes the compound FAM rule (A, B; C) into the com-

ponent rules (A, C) and (B,C). The simpler component rules are processed in parallel.

New fuzzy set inputs A' and B' pass through tile FAM matrices MAC and MBc. Max-min

composition then gives the recalled fuzzy sets CA, and Cm:

CA, = A' o MAC , (22)

Cm = B' o Msc (23)

The trick is to recompose the fuzzy sets CA, and Cm with intersection or union according

as the antecedent terms "X is A" and "Y is B" are combined with AND or OR. The negated

antecedent term "X is NOT A" requires forming the set complement C_, for input fuzzy

set A'.

Suppose we present the new inputs A' and B' to the single-FAM-rule system F that

stores the FAM rule (A, B; C). Then the recalled output fuzzy set C' equals the intersec-

tion of CA, and CB,:

F(A', B') = [A' o MAc] N [B' o MBc]

= CA, N CB,

= C'

We can then defuzzify C', if we wish, to yield tile exact output I_.

(24)

38

The logical connectivesapply to the antecedenttermsof different dimensionand mean-

ing. Decompositionalinferenceappliesthe set-theoreticanaloguesof the logical connectives

to subsetsof Z. Of course all subsets C' of Z have the same dimension and meaning.

We now prove that decompositional inference generalizes BIOFAM inference. This gen-

eralization is not simply formal. It opens an immediate path to adaptation with arbitrary

neural network techniques.

Suppose we present the exact inputs zi and yj to the single-FAM-rule system F that

stores (A, B; C). So we present the unit bit vectors Ijc and I_ to F as nonfuzzy set inputs.

Then

F(xi, yi) = F(Iix, I_) = [I_ o MAol n [Fro MBo]

= ai A C f3 bj A C

= min(ai, bj) A C

(25)

(26)

(25) follows from (8). Representing C with its membership function me, (26) is equivalent

to the BIOFAM prescription

min(ai, bj) A mc(z) (27)

for all z in Z.

If we encode the simple FAM rules (A, C) and (B, C) with correlation-product encoding,

decompositional inference gives the BIOFAM version of correlation-product inference:

F(Iix,IJy) = [Iix o ATc] n [IJy o BTc]

= aiC n biC (28)

= min(ai, bj) C (29)

= min(a,, bj) my(z) (30)

for all z in Z. (13) implies (28). min(ai ck, bj ck) = min(a,, bj) ca implies (29).

39

Decompositional inferenceallowsarbitrary fuzzy sets,waveforms,or distributions A'

and B' to be applied to a FAM system. The FAM system can housean arbitrary FAM

bank of compound FAM rules. If weuse the FAM system to control a process,the input

fuzzy sets A' and B' can be the output of an independent state-estimation system, such

as a Kalman filter. A' and B' might then represent probability distributions on the exact

input spaces X and Y. The filter-controller cascade is a common engineering architecture.

We can split compound consequents as desired. We can split the compound FAM rule

"IF X is A AND Y is B,THEN Z is C OR W is D,'or(A,B; C,D),

into the FAM rules (A, B; C) and (A, B; D). We can use the same split if the consequent

logical connective is AND.

We can give a propositional-calculus justification for the decompositional inference

technique. Let A, B, and C be bivalent propositions with truth values t(A), t(B), and

t(C) in {0, 1}. Then we can construct truth tables to prove the two consequent-splitting

tautologies that we use in decompositional inference:

[A _ (B OR C)] -----* [(A _ B) OR (A _ C)] , (31)

[A _ (BANDC)] _ [(A _ B) AND (A _ C)] , (32)

where the arrow represents logical implication.

In bivalent logic, the implication A --* B is false iff the antecedent A is true and the

consequent B is false. Equivalently, t(A --* B) = 1 iff t(A) = 1 and t(B) = O.

This allows a "brief" truth table to be constructed to check for validity. We chose truth

values for the terms in the consequent of the overall implication (31) or (32) to make

the consequent false. Given those restrictions, if we cannot find truth values to make the

antecedent true, the statement is a tautology. In (31), if t((A --* B) OR (A _ C)) = 0,

then t(A) = 1 and t(B) = t(C) = 0, since a disjunction is false iff both disjuncts are

false. This forces the antecedent A _ (B OR C) to be false. So (31) is a tautology: It

is true in all cases.

We can also justify splitting the compound FAM rule "IF X is A OR Y is B,

THEN Z is C " into the disjunction (union) of the two simple FAM rules "IF X is A,

40

THEN Z is C " and "IF Y is B, THEN Z is C" with a propositional tautology:

[(A OR B) _ C] ----+ [(A ----+ C) OR (B----+ C)] (33)

Now consider splitting the original compound FAM rule "IF X is A AND Y is B,

THEN Z is C " into the conjunction (intersection) of the two simple FAM rules "IF X

is A,THEN Z is C" and "IF Y is B,THEN Z is C." A problem arises when

we examine the truth table of the corresponding proposition

[(A AND B) ---+ C] ----+ [(A ------+ C) AND (B _ C)] (34)

The problem is that (34) is not always true, and hence not a tautology. The implication

is false if A is true and B and C are false, or if A and C are false and B is true. But the

implication (34) is valid if both antecedent terms A and B are true. So if t(A) = t(B) = 1,

the compound conditional (A AND B)---+ C implies both A ---+ C and B ---+ C.

The simultaneous occurrence of the data values xi and yj satisfies this condition. Recall

that logic is 1-dimensional set theory. The condition t(A) = t(B) = 1 is given by the 1 in
- . -

I_. and the 1 in I_.. We can interpret the unit bit vectors I)¢ and I_, as the (true) bivalent

propositions "X is xi" and "Y is Yi-" Propositional logic applies coordinate-wise. A

similar argument holds for the converse of (33).

For general fuzzy set inputs A' and B' the argument still holds in the sense of continuous-

valued logic. But the truth values of the logical implications may be less than unity while

greater than zero. If A' is a null vector and B' is not, or vice versa, the implication (34)

is false coordinate-wise, at least if one coordinate of the non-null vector is unity. But in

this case the decompositional inference scheme yields an output null vector C'. In effect

the FAM system indicates the propositional falsehood.

Adaptive Decompositional Inference

The decompositional inference scheme allows the splitting matrices MAc and MBc to

41

be arbitrary. Indeedit allows them to be eliminated altogether.

Let Nx : I" --* I q be an arbitrary neural network system that maps fuzzy subsets A'

of X to fuzzy subsets C' of Z. Nv : I p _ I q can be a different neural network. In general

Nx and Nv are time-varying.

The adaptive decompositional inference (ADI) scheme allows compound FAM rules to

be adaptively split, stored, and modified by arbitrary neural networks. The compound

FAMrule"IF X is A AND Y is B, THEN Z is C,"or (A,B; C), can be split

by Nx and Nv. Nx can house the simple FAM association (A, C). Nv can house (B, C).

Then for arbitrary fuzzy set inputs A' and B', ADI proceeds as before for an adaptive

FAMsystemF: I"xI p _ I q that houses theFAM rule(A,B; C) or a bank of such

FAM rules:

F(A',B') = Nx(A') n Nv(B') (35)

= Ca, nCs,

= C'

Any neural network technique can be used. A reasonable candidate for many un-

structured problems is the backpropagation algorithm applied to several small feedforward

multilayer networks. The primary concerns are space and training time. Several small

neural networks can often be trained in parallel faster, and more accurately, than a single

large neural network.

The ADI approach illustrates one way neural algorithms can be embedded in a FAM

architecture. Below we discuss another way that uses unsupervised clustering algorithms.

ADAPTIVE FAMs:

IN FAM CELLS

PRODUCT-SPACE CLUSTERING

An adaptive FAM (AFAM) is a time-varying mapping between fuzzy cubes. In

principle the adaptive decompositional inference technique generates AFAMs. But we

42

shall reservethe label AFAM for systemsthat generateFAM rules from training data but

that do not requiresplitting and recombiningFAM data.

We proposea geometricAFAM procedure.The procedureadaptively clusters training

samplesin the FAM systeminput-output product space. FAM mappings are balls or clusters

in the input-output product space. These clusters are simply the fuzzy Hebb matrices

discussed above. The procedure "blindly" generates weighted FAM rules from training

data. Further training modifies the weighted set of FAM rules. We call this unsupervised

procedure product-space clustering.

Consider first a discrete 1-dimensional FAM system S : I" --* IP. Then a FAM rule

has the form "IF X is Ai , THEN Y is Bi " or (Ai, Bi). The input-output product

space is I" x I p.

What does the FAM rule (Ai, Bi) look like in the product space I" x IP? It'looks like a

cluster of points centered at the numerical point (Ai, Bi). The FAM system maps points

A near Ai to points B near Bi. The closer A is to Ai, the closer the point (A, B) is to the

point (Ai, Bi) in the product space I" x I p. In this sense FAMs map balls in I '_ to balls

in I v. The notation is ambiguous since (Ai, Bi) stands for both the FAM rule mapping,

or fuzzy subset of I" x I v, and the numerical fit-vector point in I" x I p.

Adaptive clustering algorithms can estimate the unknown FAM rule (Ai, Bi) from train-

ing samples of the form (A, B). In general there are rn unknown FAM rules (A1, B1), ...,

(Am, B,,,). The number m of FAM rules is also unknown. The user may select m arbitrarily

in many applications.

Competitive adaptive vector quantization (AVQ) algorithms can adaptively estimate

both the unknown FAM rules (Ai, Bi) and the unknown number m of FAM rules from

FAM system input-output data. The AVQ algorithms do not require fuzzy-set_ data. Scalar

BIOFAM data suffices, as we illustrate below for adaptive estimation of inverted-pendulum

control FAM rules.

Suppose the r fuzzy sets Aa, ..., Ar quantize the input universe of discourse X. The

s fuzzy sets B1, ..., B, quantize the output universe of discourse Y. In general r and 8

are unrelated to each other and to the number rn of FAM rules (Ai, Bi). The user must

specify r and s and the shape of the fuzzy sets Ai and Bi. In practice this is not difficult.

43

Quantizing fuzzy setsare usually trapezoidal, and r and s are less than 10.

The quantizing collections {Ai} and {Bj} define rs FAM cells Fij in the input-output

product space I" × I p. The FAM cells F_i overlap since contiguous quantizing fuzzy sets Ai

and Ai+_, and Bj and Bj+_, overlap. So the FAM cell collection {Fij} does not partition

the product space I n × I p. The union of all FAM cells also does not equal I" × I p since

the patches F,'j are fuzzy subsets of I" × I p. The union provides only a fuzzy "cover" for

I _ x IP.

The fuzzy Cartesian product Ai × Bi defines the FAM cell Fi_. Ai × Bi is just the

fuzzy outer product A T o B, in (6) or the correlation product A T Bi in (12). So a FAM cell

Fij is simply the fuzzy correlation-minimum or correlation-product matrix Mij : Fij = Mij.

Adaptive FAM Rule Generation

Let ml,..., mk be k quantization vectors in the input-output product space I" × I p

or, equivalently, in I "+p. mj is the jth column of the synaptic connection matrix M. M

has n + p rows and k columns.

Suppose, for instance, mj changes in time according to the differential competitive

learning (DCL) AVQ algorithm discussed in Chapters 6 and 9. The competitive system

samples concatenated fuzzy set samples of the form [AIB]. The augmented fuzzy set [AIB]

is a point in the unit hypercube I "+p.

The synaptic vectors mj converge to FAM matrix centroids in I" × I p. More generally

they estimate the density or distribution of the FAM rules in I n × I p. The quantizing

synaptic vectors naturally weight the estimated FAM rule. The more synaptic vectors

clustered about a centroidal FAM rule, the greater its weight wi in (17).

Suppose there are 15 FAM-rule centroids in I '_ x I p and k > 15. Suppose ki synaptic

vectors mj cluster around the ith centroid. So k1 + ... + k_s = k. Suppose the cluster

counts k_ are ordered as

kt > k2 > ... kl5 (36)

44

The first centroidal FAM rule is as at least as frequent as the second centroidal FAM

rule, and so on. This gives the adaptive FAM-rule weighting scheme

/¢i

wi = _ (37)

The FAM rule weights wi evolve in time as new augmented fuzzy sets [A]B] are sampled.

In practice we may want only the 15 most-frequent FAM rules or only the FAM rules with

at least some minimum frequency Wmi,,. Then (37) provides a quantitative solution.

Geometrically we count the number kij of quantizing vectors in each FAM cell Fii. We

can define FAM-cell boundaries in advance. High-count FAM cells outrank low-count FAM

ceils. Most FAM cells contain zero or few synaptic vectors.

Product-space clustering extends to compound FAM rules and product spaces. The

FAM rule "IF X is A AND Y is B, THEN Z is C', or (A, B; C), is a point in

I" × [P x I q. The t fuzzy sets C1,..., Ct quantize the new output space Z. There are

rst FAM cells F_jk. (36) and (37) extend similarly. X, Y, and Z can be continuous. The

adaptive clustering procedure extends to any number of FAM-rule antecedent terms.

Adaptive BIOFAM Clustering

BIOFAM data clusters more efficiently than fuzzy-set FAM data. Paired numbers are

easier to process and obtain than paired fit vectors. This allows system input-output data

to directly generate FAM systems.

In control applications, human or automatic controllers generate streams of "well-

controlled" system input-output data. Adaptive BIOFAM clustering converts this data

to weighted FAM rules. The adaptive system transduces behavioral data to behavioral

rules. The fuzzy system learns causal patterns. It learns which control inputs cause which

control outputs. The system approximates these causal patterns when it acts as the con-

troller.

Adaptive BIOFAMs cluster in the input-output product space X × Y . The product

space X × Y is va_stly smaller than the power-set product space I n × I p used above. The

45

adaptive synaptic vectors mj are now 2-dimensional instead of n + p-dimensional. On

the other hand, competitive BIOFAM clustering requires many more input-output data

pairs (xi,yi) _ R 2 than augmented fuzzy-set samples [AIBI e I "+p.

Again our notation is ambiguous. We now use xi as the numerical sample from X

at sample time i. Earlier xi denoted the ith ordered element in the finite nonfuzzy set

X = {xl,... ,xn}. One advantage is X can be continuous, say R n.

BIOFAM clustering counts synaptic quantization vectors in FAM cells. The system

samples the nonfuzzy input-output stream (xl, Yl), (x2, y2),... Unsupervised competitive

learning distributes the k synaptic quantization vectors ml,...,mk in X × Y. Learning

distributes them to different FAMcells Fij. The FAM cells Fij overlap but are nonfuzzy

subcubes of X × Y. The BIOFAM FAM cells Fij cover X × Y.

Fij contains klj quantization vectors at each sample time. The cell counts kij define a

frequency histogram since all kij sum to k. So wij - _ weights the FAM rule "IF X is-- k

Ai, THEN Y is Bj."

Suppose the pairwise-overlapping fuzzy sets NL, NM, NS, ZE, P S, PM, PL quan-

tize the input space X. Suppose seven similar fuzzy sets quantize the output space Y. We

can define the fuzzy sets arbitrarily. In practice they are normal and trapezoidal. (The

boundary fuzzy sets NL and PL are ramp functions.) X and Y may each be the real line.

A typical FAM rule is "IF X is NL, THEN Y is PS."

Input datum xl is nonfuzzy. When X = xi holds, the relations X = NL,..., X = PL

hold to different degrees. Most hold to degree zero. X = NM holds to degree mUM(Xi).

Input datum xi partially activates the FAM rule "IF X is NM, THEN Y is ZE" or,

equivalently, (NM; ZE). Since the FAM rules have single antecedents, x; activates the

consequent fuzzy set ZE to degree muM(xi) as well. Multi-antecedent FAM rules activate

output consequent sets according to a logic-based function of antecedent term membership

values, as discussed above on BIOFAM inference.

Suppose Figure 17.5 represents the input-output data stream (xl, y_), (x2, Y2),. • • in the

planar product space X × Y:

46

X

NL

NM

NS

ZE

PS

PM

PL

NL NM NS

• °

:_,-'_:-:_.:"•

¥

ZE

o

""''_":'_:" i"

..__.;'! ,..;-
•:.]'. t._. •

• . -j.-:." •

....,,_...a:. • .

• .,. _r,,

PS

. :- - p:.;..'./o.

° .

. . ° ,

PM

i

o

!

• °

PL

.- ..,:.. ¢.

"1

FIGURE 17.5 Distribution of input-output data (xi, yi) in the input-output

product space X × Y. Data clusters reflect FAM rules, such as the steady-state

FAM rule "IF X is ZE, THEN Y is ZE'.

Suppose the sample data in Figure 17.5 trains a DCL system. Suppose such competi-

tive learning distributes ten 2-dimensional synaptic vectors ml,..., ml0 as in Figure 17.6:

47

×

NL

NM

NS

ZE

PS

PM

PL

¥

NL NM N$ ZE PS PM PL

• o •
i i

FIGURE 17.6 Distribution of ten 2-dimensional synaptic quantization vec-

tors ml,..., ml0 in the input-output product space X x Y. As the FAM system

samples nonfuzzy data (zi, yi), competitive learning distributes the synaptic

vectors in X x Y. The synaptic vectors estimate the frequency distribution of

the sampled input-output data, and thus estimate FAM rules.

FAM cells do not overlap in Figures 17.5 and 17.6 for convenience's sake. Tile corre-

sponding quantizing fuzzy sets touch but do not overlap.

Figure 17.5 reveals six sample-data clusters. The six quantization-vector clusters in

Figure 17.6 estimate the six sample-data clusters. The single synaptic vector in FAM cell

(PM; NS) indicates a smaller cluster. Since k = 10, the number of quantization vectors

in each FAM cell measures the percentage or frequency weight wi./ of each possible FAM

rule.

48

In general the additive combination rule (17) does not require normalizing the quantization-

vector count kit. wit = kit is acceptable. This holds for both maximum-membership de-

fuzzlfication (18) and fuzzy centroid defuzzification (19). These defuzzification schemes

prohibit only negative weight values.

The ten quantization vectors in Figure 17.6 estimate at most six FAM rules. From most

to least frequent or "important", the FAM rules are (ZE; ZE), (PS; NS), (NS; PS),

(PM; NS), (PL; NL), and (NL; PL). These FAM rules suggest that fuzzy variable X is

an error variable or an error velocity variable since the steady-state FAM rule (ZE; ZE) is

most important. If we sample a system only in steady-state equilibrium, we will estimate

only the steady-state FAM rule. We can accurately estimate the FAM system's global

behavior only if we representatively sample the system's input-output behavior.

The "corner" FAM rules (PL; NL) and (NL; PL) may be more importafit than their

frequencies suggest. The boundary sets Negative Large (NL) and Positive Large (PL)

are usually defined as ramp functions, as negatively and positively sloped lines. NL and

PL alone cover the important end-point regions of the universe of discourse X. They give

mNz(X) = reeL(x) = 1 only if x is at or near the end-point of X, since NL and PL are

ramp functions not trapezoids. NL and PL cover these end-point regions "briefly". Their

corresponding FAM cells tend to be smaller than the other FAM cells. The end-point

regions must be covered in most control problems, especially error nulling problems like

stabilizing an inverted pendulum. The user can weight these FAM-cell counts more highly,

for instance wij = c kij for scaling constant c > 0. Or the user can simply include these

end-point FAM rules in every operative FAM bank.

Most FAM ceils do not generate FAM rules. More accurately, we estimate every possible

FAM rule but usually with zero or near-zero frequency weight wij. For large numbers of

multiple FAM-rule antecedents, system input-output data streams through comparatively

few FAM cells. Structured trajectories in X × Y are few.

A FAM-rule's mapping structure also limits the number of estimated FAM rules. A

FAM rule maps fuzzy sets in I n or F(2 x) to fuzzy sets in I v or F(2Y). A fuzzy associative

memory maps every domain fuzzy set A to a unique range fuzzy set B. Fuzzy set A cannot

map to multipIe fuzzy sets B, B', B", and so on. We write the FAM rule as (A; B) not

49

(A; B or B' or B" or.,..). So we estimate at most one rule per FAM-cell row in Figure

17.6.

If two FAM cells in a row are equally and highly frequent, we can pick arbitrarily either

FAM rule to include in the FAM bank. This occurs infrequently but can occur. In principle

we could estimate the FAM rule as a compound FAM rule with a disjunctive consequent.

The simplest strategy picks only the highest frequency FAM cell per row.

The user can estimate FAM rules without counting the quantization vectors in each

FAM cell. There may be too many FAM cells to search at each estimation iteration.

The user never need examine FAM cells. Instead the user checks the synaptic vector

components mlj. The user defines in advance fuzzy-set intervals, such as [lNc, UNL] for

NL. If bVL < rnij < UNL, then the FAM-antecedent reads "IF X is NL."

Suppose the input and output spaces X and Y are the same, the real interval [-35, 35].

Suppose we partition X and Y into the same seven disjoint fuzzy sets:

NL = [-35,-25]

NM = [-25,-151

NS = [-15,-5]

ZE = [-5,5]

PS = [5, 151

PM = [15, 25]

PL = [25, 35]

Then the observed synaptic vector mj = [9, -10] increases the count of FAM cell

PS × NS and increases the weight of FAM rule "IF X is PS, THEN Y is NS."

This amounts to nearest-neighbor classification of synaptic quantization vectors. We

assign quantization vector mk to FAM cell F;j iff mk is closer to the centroid of Fij than

to all other FAM-cell centrolds. We break ties arbitrarily. Centroid classification allows

the FAM cells to overlap.

r _

5O

Adaptive BIOFAM Example: Inverted Pendulum

We used DCL to train an AFAM to control the inverted pendulum discussed above.

We used the accompanying C-software to generate 1,000 pendulum trajectory data. These

product-space training vectors (0, A0, v) were points in R 3. Pendulum angle 0 data

ranged between -90 and 90. Pendulum angular veclocity A0 data ranged from -150 to

150.

We defined FAM cells by uniformly partitioning the effective product space. Fuzzy

variables could assume only the five fuzzy set values NM, NS, ZE, PS, and PM. So

there were 125 possible FAM rules. For instance, the steady-state FAM rule took the form

(ZE, ZE; ZE) or, more completely, "IF 0 = ZE AND A0 = ZE, THEN v = ZE."

A BIOFAM controlled the inverted pendulum. The BIOFAM restored the pendulum

to equilibrium as we knocked it over to the right and to the left. (Function keys F9 and

F10 knock the pendulum over to the left and to the right. Input-output sample data

reads automatically to a training data file.) Eleven FAM rules described the BIOFAM

controller. Figure 17.1 displays this FAM bank. Observe that the zero (ZE) row and

column are ordinal inverses of the respective row and column indices.

FIGURE 17.7

0
NM NS : Z PS PM

NM
_p _

NS _;il:_i_ I i'i_7"_i_

PS :::Z ii: :::NSI _

PM NM

Inverted-pendulum FAM bank used in simulation. This

51

BIOFAM generated 1,000 sample vectors of the form (O, AO, v).

We trained 125 3-dimensional synaptic quantization vectors with differential compet-

itive learning, as discussed in Chapters 4,6, and 9. In principle tile 125 synaptic vectors

could describe a uniform distribution of pr0duct-space trajectory data. Then the 125

FAM cells would each contain one synaptic vector. Alternatively, if we used a vertically

stabilized pendulum to generate the 1,000 training vectors, all 125 synaptic vectors would

concentrate in the (ZE, ZE; ZE) FAM cell. This would still be true if we only mildly

perturbed the pendulum from vertical equilibrium.

DCL distributed the 125 synaptic vectors to 13 FAM cells. So we estimated 13 FAM

rules. Some FAM cells contained more synaptic vectors than others. Figure 17.8 displays

the synaptic-vector histogram after the DCL samples the 1,000 samples. Actually Figure

17.8 displays a truncated histogram. The horizontal axis should list all 125 FAM cells,

all 125 FAM-rule weights wk in (17). The missing 112 entries have zero synaptic-vector

frequency.

Figure 17.8 gives a snapshot of the adaptive process. In practice, and in principle,

successive data gradually modify the histogram. "Good" training samples should include

a significant number of equilibrium samples. In Figure 17.8 the steady-state FAM cell

(ZE, ZE; ZE) is clearly the most frequent.

52

4O

IO

0
3 8 g 10 11 12 13 14 15 16 17 18 23

RaiSe

FIGURE 17.8 Synaptic-vector histogram. Differential competitive learn-

ing allocated 125 3-dimensional synaptic vectors to the 125 FAM cells. Here

the adaptive system has sampled 1,000 representative pendulum-control data,

DCL allocates the synaptic vectors to only 13 FAM cells. The steady-state

FAM cell (ZE, ZE; ZE) is most frequent.

Figure 17.9 displays the DCL-estimated FAM bank. The product-space clustering

method rapidly recovered the 11 original FAM rules. It also estimated the two additional

FAM rules (PS, NM; ZE) and (NS, PM; ZE), which did not affect the BIOFAM

system's performance. The estimated FAM bank defined a BIOFAM, with all 13 FAM-

rule weights set wk equal to unity, that controlled the pendulum as well as the original

BIOFAM did.

53

NM

NS

AO z

PS

PM

0
qM NS Z PS PM

:rs .:;Z,

i'._._ '1

PM I NS _

/;_Z ::i

FIGURE 17.9 DCL-estimated FAM bank. Product-space clustering re-

covered the original11 FAM rulesand estimated two new FAM rules.The new

and originalBIOFAM systems controlledthe inverted pendulum equally well.

In nonrealtime applications we can in principle omit the adaptive step altogether. We

can directly compute the FAM-cell histogram if we exhaustively count all sampled data.

Then the (growing) number of synaptic vectors equals the number of training samples. This

procedure equally weights all samples, and so tends not to "track" an evolving process.

Competitive learning weights more recent samples more heavily. Competitive learning's

metrical-classification step also helps filter noise from the stream of sample data.

54

REFERENCES

Dubois, D., Prade, H., Fuzzy Sets and Systems: Theory and Applications, Academic Press,

New York, 1980.

Hebb, D. The Organization of Behavior, Wiley, 1949.

Klir, G.J., Foger, T.A., Fuzzy Sets, Uncertainty, and Information, Prentice-Hall, 1988.

Kosko, B., "Fuzzy Knowledge Combination," International Journal of Intelligent Systems,

vol. 1,293 - 320, 1986.

Kosko, B., "Fuzzy Associative Memories," Fuzzy Expert Systems, A. Kandel (ed.), Addison-

Wesley, in press, December 1986.

Kosko, B., "Fuzzy Entropy and Conditioning," Information Sciences, vol. 40, 165 - 174,

1986.

Kosko, B., Foundations of Fuzzy Estimation Theory, Ph.D. dissertation, Department of

Electrical Engineering, University of California at Irvine, June 1987; Order Number 8801936,

University of Microfilms International, 300 N. Zeeb Road, Ann Arbor, Michigan 48106.

Kosko, B., "Hidden Patterns in Combined and Adaptive Knowledge Networks," Interna-

tional Journal of Approximate Reasoning, vol. 2, no. 4, 377 - 393, October 1988.

Mamdani, E.H., "Application of Fuzzy Logic to Approximate Reasoning Using Linguistic

Synthesis," IEEE Transactions on Computers, vol. C-26, no. 12, 1182 - 1191, December

1977.

55

Taber, W.R., Siegel,M.A., "Estimation of Expert Weights Using Fuzzy Cognitive Maps,"

Proceedings of the IEEE 1st International Conference on Neural Networks (ICNN-87), vol.

II, 319 - 325, June 1987.

Taber, W.R., "Knowledge Processing with Fuzzy Cognitive Maps," Expert Systems with

Applications, in press, 1990.

Togai, M., Watanabe, H., "Expert System on a Chip: An Engine for Realtime Approxi-

mate Reasoning, IEEE Expert, vol. 1, no. 3, 1986.

Yamakawa, T., "A Simple Fuzzy Computer Hardware System Employing MIN & MAX

Operations," Proceedings of the Second International Fuzzy Systems Associati6n (IFSA),

Tokyo, 827 - 830, July 1987.

Yamakawa, T., "Fuzzy Microprocessors-Rule Chip and Defuzzification Chip," Proceedings

of the International Workshop on Fuzzy Systems Applications, Iizuka-88, Kyushu Institute

of Technology, 51 - 52, August 1988.

Zadeh, L.A., "A Computational Approach to Fuzzy Quantifiers in Natural Languages,"

Computers and Mathematics, vol. 9, no. 1,149 - 184, 1983.

PROBLEMS

1. Use correlation-minimum encoding to construct the FAM matrix M from the fit-

vector pair (A, B) if A = (.6 1 .2.9) andB = (.8.3 1). Is (A,B) a bidirectional

fixed point? Pass A' - (.2.9.3.2) through M and B' - (.9.5 1) through M T.

Do the recalled fuzzy sets differ from B and A?

56

2. RepeatProblem 1 using correlation-product encoding.

3. Compute the fuzzy entropy E(M) of M in Problems 1 and 2.

4. If M = A T o B in Problem 1, find a different FAM matrix M' with greater fuzzy

entropy, E(M') > E(M), but that still gives perfect recall: A o M' = B.

Find the maximum entropy fuzzy associative memory (MEFAM) matrix M" such

thatA o M* = B.

5. Prove: If M = A T o B or M = A T B,A o M = B, and A -C A', then

A'oM=B.

6. Prove: max min(ak, bk) < min(max ak, max bk).
l(_k(m -- "l__k m l__k_m

7. Use truth tables to prove the two-valued propositional tautologies:

(a) [A_(BORC)]

(b) [A----* (BANDC)] ----*

(c) [(A OR B)----* C]

(d) [(A---*C) AND(B _C)]

[(A_B) OR (A_C)] ,

[(A_B) AND (A---,C)] ,

[(A_ C) OR (B ---_ C)1 ,

----, [(A AND B) _ C]

Is the converse of (c) a tautology? Explain whether this affects BIOFAM inference.

8. BIOFAM inference. Suppose the input spaces X and Y are both [-10, 10], and the

output space Z is [-100, 100]. Define five trapezoidal fuzzy sets-NL, NS, ZE, PS, PL--

on X, Y, and Z. Suppose the underlying (unknown) system transfer function is

z = z _ - y2. State at least five FAM rules that accurately describe the system's

57

behavior. Use z = x 2 - y2 to generate streams of sample data. Use BIOFAM in-

ference and fuzzy-centroid defuzzification to map input pairs (x, y) to output data z.

Plot the BIOFAM outputs and the desired outputs z. What is the arithmetic average

of the squared errors (F(x, y) - x 2 -F y2)2? Divide the product space X x Y x Z

into 125 overlapping FAM cells. Estimate FAM rules from clustered system data

(x, y, z). Use these FAM rules to control the system. Evaluate the performance.

Software Problems

The following problems use the accompanying FAM software for controlling an inverted

pendulum.

1. Explain why the pendulum stabilizes in the diagonal position if the pendulum bob

mass increases to maximum and the motor current decreases slightly. The pendulum

stabilizes in the vertical position if you remove which FAM rules?

2. Oscillation results if you remove which FAM rules? The pendulum sticks in a hori-

zontal equilibrium if you remove which FAM rules?

58

NEURAL NETWORK REPRESENTATION

AND LEARNING OF MAPPINGS

AND THEIR DERIVATIVES

April 1990

Halbert White, Ph.D.

University of California, San Diego

Collaborative research with:

K. Hornik, M. Stinchcombe and A.R. Gallant

59

ABSTRACT

We discuss recent theorems proving that artificial neural networks are

capable of approximating an arbitrary mapping and its derivatives as

accurately as desired. This fact forms the basis for further results

establishing the leamability of the desired approximations, using results

from non-parametric statistics. These results have potential applications in

robotics, chaotic dynamics, control, and sensitivity analysis (physics,

chemistry, and engineering). We discuss an example involving learning the

transfer function and its derivatives for a chaotic map.

60

Jordan (1989), "Generic Constraints on Underspecified Target Trajectories,"

Proceedings IJCNN, Washington D.C.:

The Jacobian matrix 3zlOx ... is the matrix that relates small changes in the

controller output to small changes in the task space results and cannot be

assumed to be available a priori, or provided by the environment. However,

all of the derivatives in the matrix are forward derivates. They are easily

obtained by differentiation if a forward model is available. The forward

model itself must be learned, but this can be achieved directly by system

identification. Once the model is accurate over a particular domain, its

derivatives provide a learning operator that allows the system to convert

errors in task space into errors in articulartory space and thereby change the

controller.

61

UNIVERSAL APPROXIMATION OF AN UNKNOWN

MAPPING AND ITS DERIVATIVES USING

MULTILAYER FEEDFORWARD NETWORKS *

by

Kurt Homik, Maxwell Stinchcombe

and

Halbert White

January 1990

We are indebted to Angelo Melino for pressing us on the issue addressed here and to

the referees for numerous helpful suggestions. White's participation was supported by

NSF Grant SES-8806990.

62

ABSTRACT

We give conditions ensuring that multilayer feedforward networks with as few as a

single hidden layer and an appropriately smooth hidden layer activation function are

capable of arbitrarily accurate approximation to an arbitrary function and its derivatives.

In fact, these networks can approximate functions that are not diiferentiable in the

classical sense, but possess only a generalized derivative, as is the case for certain

piecewise differentiable functions. The conditions imposed on the hidden layer

activation function are relatively mild; the conditions imposed on the domain of the

function to be approximated have practical implications. Our approximation results

provide a previously missing theoretical justification for the use of multilayer

feed.forward networks in applications requiring simultaneous approximatio n of a function

and its derivatives.

63

Relevant Application Areas:

1. Robotics

2. Chaotic Dynamics

3. Control

4. Sensitivity Analysis (Physics, Chemistry, Engineering)

64

Intuition suggests that networks having smooth hidden layer activation functions

ought to have output function derivatives that will approximate the derivatives of an

unknown mapping. However, the justification for this intuition is not obvious. Consider

the class of single hidden layer feedforward networks having network output functions

belonging to the set

Z(G)-- {g " _r.._> _ [g(x) -- _._ _jG(xT_j);

j=l

Xe fl_r,_j_ fl_,Tje iRr+l,j=l,...,q,q¢ IN},

where x represents an r vector of network inputs (r _ /N-= {1,2, ...}), :x - (1,xT) T

(the superscript T denotes transposition), flj represents hidden to output layer weights

and yj represents input to hidden layer weights, j = 1,..., q, where q is the number of

hidden units, and G is a given hidden unit activation function. The first partial

derivatives of the network output function are given by

ag(x)/ axi= pjrj,Da(rrj),
j=l

i = 1,..., r,

where xi is the ith component ofx,'yj i is the ith component of_yj, i = 1,..., r (Yj0 is the

input layer bias to hidden unit j), and DG denotes the first derivative of G.

65

output

hidden

x1 x2 x3 x4

input

Figure 2

Single Hidden Layer Feedforward Network

66

Outline:

1. Mathematical Background

2. Approximation Results

3. Learning Results

4. Example: Learning Chaotic Map

67

1. MATHEMATICAL BACKGROUND

Let U be an open subset of _r, and let C (U) be the set of all functions continuous

on U. Let ct be an r-tupl¢ tz = (t_ 1,... ,ar) T of non-negative integers (a "multi-index").

Ifx belongs to _r, let x a ffix_ 1 a,- " ... "Xr • Denote by D a the partial derivative

alallax a _olall(ax , a,=ffi _J" 2 . . .UJ, r)

of order lal-al +a2+...+ar. For non-negative integers m, we define

cm(u) - {f_ C(U): Daf_ C(U)for alltx, Ictl <m} and C"(U)= ram>l Cm(U).

We let D O be the identity, so that cO(u) = C(U). Thus, the functions in cm(u) have

continuous derivatives up to order m on U, while the functions in C°'(U) haw

continuous derivatives on U of every ordex. Wc shall be interested in approximating

dements of cm(u) using f¢cdforward networks. When U g _r the fact that network

output functions (elements of E(G)) will belong to cm(fl_r) necessitates considering

• their restriction to U, written g It/for g in ,Y,(G). Recall that g IU(x) = g (x) for x in U

and is not defined for x not in U, thus g Iv _ cm(u) , as desired.)

68

DEFINITION 2.1: Let U be a subset of _r, letS be a collection of functions ft.

U ---) /R and let p be a metric on S. For any g in 2_(G) (recall g : _r> _) define

the restriction of g to U, g IU as g Iu(x) = g (x) for x in U, g It/(x) unspecified for x

notin U.

Suppose that for any f in S and e > 0 there exists g in Y-(G) such that

P(f, g Iu) <e. Then we say that E(G) contains a subsetp-dense in S. If in addition

g IU belongs to S for every g in E(G), we say that E(G) isp-dense in S. []

DEFINITION 2.2: Let m, 1 _ {0} t.)/N, 0 < m </, and U c /R r be given, and let

S c CI(u). Suppose that for any f in S, compact K c U and e > 0 there exists g in

E(G) such that maxlal <m supx_ K I Daf(x)-Dag(x) I <e. Then we say that

E(G) is m-uniformly dense on compacta in S. []

When E(G) is m-uniformly dense on compacta in S, then no matter how we choose

an f in S, a compact subset K of U, or the accuracy of approximation e > 0, we can

always find a single hidden layer feedforward network having output function g (in

E(G)) with all derivatives of g Iu on K up to order m lying within e of those of f on K.

This is a strong and very desirable approximation property.

69

The space Lp(U,#) is the collection of all measurable functions f such that

[[f[[p,U.p -- [_1 If IPd#]I/P < _, 1 <p <_, where the integral is defined in the

sense of Lcbesgue. When/_ =/1, we may write either IV fd/1, or _u f(x)dx to denot_

the same integral. We measure the distance between two functions f and g belonging to

Lp(U,_)in terms of the metricpp, U,#_, g) mllf - S lip,u,Iz.Two functionsthatdiffer

only on setsof/z-measure zerohave pp, u,/z(f,g) = O.We shallnot distinguishbetween

such functions.

The first Sobolev space we consider is denoted S_(U,#), defined as the collection

of all functions f in cm(u) such that lID a flip, u,p < oo for all I o_ I _< m. We define

the Sobolev norm Ufllm,p,U,U- (_) a I <mIlDa fll_,,v,.) x/p.TheSobolevmetric is

ppm_ff, g)=-llf --gil_,p,V,_ f,g E S_'(U,/a).

Note that mPp, Ia depends implicitly on U, but we suppress this dependence for notational

convenience. The Soboiev metric explicitly takes into account distances between

derivatives. Two functions in S_(U,/a) are close in the Sobolev metric mp p, p when all

derivatives of order 0 < I a I -< m axe close in Lp metric.

7o

We also consider the Sobolev spaces

W_(U) =- _ _ L l,loc(U) l _ f e Lp(U,_,), O < lot i <_m }.

This is the collection of all functions having generalized derivatives belonging to

Lp(U,A,) of order up to m. Consequently, wry(u) includes S_(U,_,), as well as

functions that do not have derivatives in the classical sense, such as pieeewise

differentiable functions.

The norm on W_(U) generalizes that on S_(U,;t); we write it as

Ilfllm,P,U=(E II_fllg, rJ,x)I/p f _ W_(U).
lal_m

For the metric on W_(U) we suppress the dependence on U and write

P_ g) =llf- g IIm,p,u f, g _ W'_(U).

Two functions are close in the Sobolev space W_(U) if all generalized derivatives are

close in Lp(U,,_) distance.

71

Our results make fundamental use of one last function space, the space C_ (_r)

of rapidly decreasing functions in C**(_r). C_(/R r) is defined as the set of all

functions in C_*(/R r) such that for all multi-indices a andS, x#Daf(x)"->O as

I_ I-_**,whor_:'-_/:.._r" an_iXI:-max_,,rIx,I. ,o_ _,

cb*(m') c c_(m').

Desired results:

1.) 7.,(G) is m-uniformly dense on compacta in C_(_r), S_(U, I_)

2.) X(G)isp_,#-denseinS_(m r, g)

3.) Y-(G) isp_-dense inW_(U)

72

2. APPROXIMATION RESULTS

THEOREM 3.1: Let G ¢ 0 belong to S_(/R,_,) for some integer m _>0. Then Z(G)
I

is m-uniformly dense on compacta in C_' (_r). []

DEFINITION 3.2: Let l e {0} u/N be given. G is l-finite if G _ cl(IR) and.

O<IIDIGId_,<o,. []

LEMMA 3.3: If G is l-finite then for all 0 < m -< l there exists H _ S_n(_,_,), H # 0,

such that 7_,(H) c E(G). []

l-finite activation functions G with _ DIG dlq, * 0 have I IDmG I dA 00 for an m < l,

and for m > l all l-finite activation functions G have _DmG d_ = 0 (provided DraG

exists).

It is informative to examine cases not satisfying the conditions of the theorems. For

example, ff G = sin then G _ C**(_), but for all l, f I DlG I d,_, = **. If G is a

polynomial of degree m then again G _ C**(_), but for l<m we have

I IDIG I d_, = **, although f I DIG I d2 = 0 for l > m. Consequently, neither

trigonometric functions nor polynomials are/-finite.

73

COROLLARY 3.4: If G is l-finite, then for all 0 _ m < 1, _(G) is m-uniformly dense

on compacta in C_ (_r). []

COROLLARY 3.5: If G is l-finite, 0 _<m < l, and U is an open subset of

Z(G) is m-uniformly dense on compacm in S_(U,/1,) for 1 < p < oo. 0

_r then

COROLLARY 3.6: If G is/-finite and/.t is compactly supported, then for all 0 < m < 1

,_.,(G)cSr_(j_r,/_) and _,(G) isp_,/z_dense inS_(_r,//).

COROLLARY 3.8: If G is/-finite, 0 < m < l, U is an open bounded subset of _r and

C_° (/R r) is p_-dense in W_(U) then Y_(G) is also p_-dense in Wry(U).

These results rigorously establish that suff_iently complex multilayer feedforward

networks with as few as a single hidden layer are capable of arbitrarily accurate

approximation to an unknown mapping and its (generalized) derivatives in a variety of

precise senses. The conditions imposed on G are relatively mild; the conditions required

of U have practical implications.

74

g

Xl 711

Figure 1.

0 input unit

GO activation unit

"_21 "Y12"Y22 x2

Feedforward Network

(_ multiplication unit

(_ additionunit

Note: biases not shown

75

gl

g

g2

I

DG

Figure 2. Derivative Network

0 input unit (_ multiplication unit

GO activation unit (_ addition unit

DGO activation derivative unit

Note: biases not shown

76

On Learning the Derivatives of an Unknown Mapping

with Multilayer Feedforward Networks

by "

A. Ronald Gallant

Department of Statistics

North Carolina State University

Raleigh, NC 27696-8203 USA

Halbert White

Department of Economics, D-008
University of California, San Diego

La Jolla, CA 92093

October 1989

77

ABSTRACT

Recently, multiple input, single output, single hidden layer, feedforward

neural networks have been shown to be capable of approximating a nonlinear map

and its partial derivatives. Specifically, neural nets have been shown to be dense

in various Sobolev spaces (Homik, Stinchcombe and White, 1989). Building

upon this result, we show that a net can be trained so that the map and its

derivatives are learned. Specifically, we use a result of Gallant (1987b) to show

that least squares and similar estimates are strongly consistent in Sobolev norm

provided the number of hidden units and the size of the training set increase

together. We illustrate these results by an application to the inverse problem of

chaotic dynamics: recovery of a nonlinear map from a time series of iterates.

These results extend automatically to nets that embed the single hidden layer,

fecAforward network as a special case.

78

3. LEARNING RESULTS

SETUP. We consider a single hidden layer feedforward network having network

output function

K

gK(x, O) = _ fljG(xr_j)
j=l

where x represents an r x 1 vector of network inputs (including a "bias unit"), fly

represents hidden to output layer weights, yj represents input to hidden layer

weights, K is the number of hidden units,

o'= (p_,r_,/h, r2 ,... ,/_, r_),

and G is the hidden unit activation function.

We assume

according to

that the network is trained using data {Yt, Xt} generated

Yt = g* (xt) + et t = 1, 2, ..., n .

xt denotes the observed input and e t denotes random noise. The number Kn of

hidden units employed depends on the size n of the training set. The network is

trained by finding gr, (x, 0) that minimizes

K,
sn(O)= ± _, Cy,-g #ja(xrrj)? ,

n t=l j=l

subject to the restriction that gg, (x, 0) is a member of the estimation space ft.

79

REGULARITY CONDITIONS:

Input space. The input space X is the closure of a bounded, open subset of j_r.

Parameter space. For some integer m, 0 < m < 0%some integer p, 1 _ p < 0% and

some bound B, 0 < B < oo, g Is a point in the Sobolev space Wm+[r/pl+l,p, x and

Jlg*llm+[r/pJ+l,p,x<B.

Activation function. The activation

f_(dm/dum)G(u) du < oo. See Section

(1989).

function G belongs to cm(_) and

3 of Hornik, Stinchcombe and White

Estimation space, gK.(X, 0) is restricted

the optimization of sn(g).

to _= (g: Ilg llm+tr/pl+l,p, x < B} in

Training set. The empirical distribution of {Xt}_= 1 converges to a distribution

/z(x) and#(O) > 0 for every open subset 0 of.

Error process. The errors {et} are independently and identically distributed with

common probability law P having _eP(de)=O and 0<_e2p(de)<oo.

(_e 2p (de) = 0 implies et = 0 for all t.)

80

Independence. The probability law P of the errors does not depend on {xt}_*=l;

that is, P(A) can be evaluated without knowledge of {xt}r/-l,

limn_.__(l/n)Et=l xt, etc.

81

THEOREM 1. Under the Regularity Conditions

tim IIg
n_

-gK,(" ,o)llm.oo.x--o almost surely

provided limn_o** Kn = oo almost surely. In particular,

tima_K,(x, b)] =a(g*)
n_

almost surely

provided ¢r is continuous with respect to I1"lira._, x" []

82

4. EXAMPLE: LEARNING CHAOTIC MAP

Our investigation studies the ability of the single hidden layer network

K

gx(xt-5 , . . . , xt-1) = _ fljG(75jxt-5 + ""+71j Xt-I + YOj)

jffil

with logistic squasher

G(u) = 1/[1 + exp(-u)]

to approximate the derivatives of a discretized variant of the Mackey-Glass

equation (Schuster, 1988, p. 120)

[(0"2)Xt-5 -(0.1)Xt_a]g(xt-5, Xt-1) = Xt-1 + (10.5) 1 + (Xt_5) 10

The values of the weights flj and _ij that minimize

n
1 ___ [xt-gK(Xt-5,..., Xt-1)]2sn(gr) = n

t=l

were determined using the Gauss-Newton nonlinear least squares algorithm. Our

rule relating K to n was of the form K *_ log(n) because asymptotic theory in a

related context (Gallant, 1989) suggests that this is likely to be the relationship

that will give stable estimates.

83

OI

C_

0

C

-0
C
0

O_

Gc
0

c_
"-- II

C_
0

C

-0

©

0

0_

E
o_

O_

e_

b_

I

I i

!
I

I

I

I

/

I

I
I

0

itl

0

I£1

0

o.
0

lid
w

0
I

0

I

lid

I

0

I

Q
!

X

o

c_
c_
c_

I
X

v

I!
X

g_
w

CD

c"

_D

cf)

CD

_D

E

I..d

oe

0

Z

84

E

{3

,_> c::

-Or

C_

(D

E_
e_

LJ_

i ' | • i ' i • I • i • I ' i ' I ' I • I • I • i • i ' i ' I ' i

,'--'_,0 LrJ 0 _ 0 Lr) 0 Lr) 0 K'J (:3 Lr) 0 _ 0 ILl 0
x

I I I ! I I I I I I

_r)
I

X

_ .

0

0

o"

x
{I

o T

(/1

°

I

o

!

85

C

_o
E_

0 v
¢-

-i

b_
X

I I I I

cS

0

II

0

°

Lf_

0

!

86

-!

<-

-0
C
0

0

_>o
4--

U II
> c

u_

-O II

"U

0

E
Qm

q)
_7

4
I ' I " i ' I ' i ' i ' I " I ' | ' | • I ' i ° i ' I ' i ' |--_

,_'_0 11'3 0 L_ 0 Iii 0 K'_ 0 111 0 LO 0 11"] 0 K3 0
x

'_.J P] OJ Od .4 .,_ 0 0 0 ',,4 '.4 i'd Od _ ('q 'q" _" [0

I I I I I I I I I I

M'I

I

X

o

0

d

d
113

o d

I
x

v

II
o T x
o x

¢-

7O

m ¢-
o ffl
i U

T E
w_

ILl
g_

m o

I

o

I

87

<D

e_

--t.-,

(/)

(1)
c"

0

0
C

-0
C
0

O_
Oo

0 c

C II
OV
C

-0
0

0
CL

E
_m

L.
q)
O_
7

q)

,JJ

LI_
X •

t i / i

c)

('%1

113

o

,,r4

I1"1

0

0

o

tO

o
I

o

I

T'

o

o.I
i

at#
!

X

0

o"

6

!
x

v

li
x

c
e_
w

"u

r-
G"}

0

5'1

0

E
,m

5'1
w

o
Z

88

o

(D

E

I ' I • I ' I ' ! • l • i • I • I ' i ' I ' I • I • I • I • I • g

_0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0 _ 0
X "

I I I I I l I I I I

I
x

tel

0

tn

0

o ?
o X

lrl

0
I

o

I

LO

I

O

I

O

o"

I
x

II
x

E
em

"EJ
¢1

..C
(/1

"O

Om

"4--"

O
E

,N

t/I
i,I

ii

.-I..-

O
Z

89

Impact of Application of Fuzzy Theory to Industry

(Paper not provided by publication date.)

pRECEDiNG PAGE BI_/_K NOT FILMED

Time-sweepingModeFuzzyComputer--ForwardandBackward
FuzzyInferenceEngine

(Papernotprovidedbypublicationdate.)

93
PRL:_C,EDII'_;iPAGE6LAI_]KNOT FILMED

The

Abstract

Simplification of Fuzzy Control Algorithm
and Hardware Implementation

Z. Q. Wu, P. Z. Wang and H. H. Teh
Institute of Systems Science

National University of Singapore
Heng Mui Keng Terrace,Kent Ridge

Singapore 0511

The conventional inference composition algorithm of fuzzy controller is very time and
memory consuming. As a result, it is difficult to do real time fuzzy inference and most

fuzzy controllers are realized by look-up tables. In this paper we derived a simplified
algorithm using the defuzzification mean of maximum. This algorithm takes shorter

computation time and needs less memory usage, thus making it possible to compute the
fuzzy inference on real time and easy to tune the control rules on line. The responsibility
of thisalgorithm is proved mathematically in this paper.

Fuzzy controller has been highly developed and come to a new stage of hardware
implementation. Many fuzzy controllers(or so called fuzzy inference machines) in
hardware have been available in the market. The conventional fuzzy inference algorithm
on which most fuzzy controller based on is too complicated. Further, its hardware
implementation is very expensive and of a large volume, and the inference speed is

limited. Reducing its cost and volume and improving its inference speed are very
important to this technology. In this paper we also describe a hardware implementation
based on the above simplified fuzzy inference algorithm.

1. Fuzzy controller algorithm

Assume that the fuzzy controller has two inputs and a single output as shown
in Figure I,

Input
X -] Fuzzy Relation

B .._I R
Y

C

U _ Output

Fig.1 The block graph of fuzzy controller

95

where A and B are the linguistic variables of the inputs, with universe of

discourse X and Y respectively, and C is the linguistic variable of the output,

with universe of discourse U. We emphasize here that X and Y are not

necessarily continuous on the real line R, but arbitrary subsets of R.

Let the sets of linguistic values concerning with A, B and C respectively be as
follows

{Ai} _F(X), (ie I)

{Bj} _ F(Y), (j _ J)

{Ck} _ F(U), (k _ K)

(1)
(2)
(3)

where I={1, 2, ..., m}, J={1,2, ..-, n}, K={1, 2, .-., h}, and F(X) represents the fuzzy

power set of X.

The fuzzy control rules are described in terms of a group of multi-eomplexed
fuzzy implications as follows:

If A is Ai and B is Bj then C is Ck,

(ie I,j¢ J,k= to(i,j) e K)

(4)

The above fuzzy implications can be translated into a three-dimensional

relation R according to the fuzzy Compositional Rule of Inference(CRI method).

Definition 1. R -u (Aix Bjx Ok)
i,j

R_ F(X x Y x U),

R(x,y, u)= v (Ai(x) ^ Bj(.v)̂ ek(u)).
i,j

(k = t0(i, j) e K)

(5)

Suppose that the inputs of the fuzzy controller at a certain instance are fuzzy

sets A* _ F(X) and B* _ F(Y), according to the CRI method, the output of the

controller will be the fuzzy set denoted by C* _ F(U), i.e

96

C* = (A* x B*) o R

C*(u) = sup (A*(x) A B*(y) A R(x, y, u))
x_X

yeY

= sup ((A*(x) A B*(y)) A (V (Ai(x) A Bj(y) A C-_(i, j)(u))))

x_ X i,j

yeY

= sup (V ((A*(x) A Ai(x)) A (B*(y) A Bj(y)) A C(p(i, j)(u)))

xe X i,j

ye Y

= V sup((A*(x) A Ai(x)) A sup(B*(y) A Bj(y)) A C¢(i, j)(u)

i,j x_ X y_ Y

(6)

In actual applications the inputs of the controller (i.e the observed values of

the controlled process) are some definite real numbers. Suppose in a certain

instance the observed value is a pair (Xo, yo), then the fuzzy sets of inputs A*

and B* are as follows,

1, x=x o 1, Y=Yo
• B*(y) = {

A*(x) = { 0, x#x o 0, Y#Yo (7)

so that sup(A*(x) A Ai(x)) = Ai(xo) (8)

x_X

sup(B*(y) A Bj(y)) = Bj(yo) (9)

yeY

therefore

2. The responsibility

C*(u) = V (Ai(xo)A Bj(yo))A Ctp(i, j)(u)

ij

(i e I, j e J, (p(i, j) e K)

of the fuzzy controller

(10)

97

The responsibility of a fuzzy controller has been defined and analyzed in depth
by P. Z. Wang and S. P. Lou[3], here we discuss the responsibility of fuzzy
controller under a weaker condition.

Definition 2 For a set of linguistic values concerning with A is {Ai}(i e I) e 9"(X),

I={1, 2, ..., m}, where Ai is a normally distributed fuzzy set, there
exists m+l real numbers

re <rl <r2< ... <rm,

such that for any given x e (ri-1, ri), if j 8 i, Aj(x) < Ai(x) (see

Figure 2). We called Ji = (ri-l, ri) = X, the interval of Ai, i e I, and

N 1 = { ri } the net of A, where Ji and N 1 satisfy the following:

Jin Jj=_,(i_j) (11)

m

L9 Ji = X - { ri} (12)
i=l

iz1 _l(x) AJ(x) Ai, l(x)

0 ri-1 ri ri+! x

Figure 2 Membership functions of fuzzy sots Ai

For {Ai} e F(X), {Bj} e FCY), we have

(Ai × Bj)(x, y) 3 Ai(x) A Bj(y)

V i e I, V j e J, I={ 1, 2, -.., m}, J={ 1,2, ..-, n}.

(13)

(14)

If there exist nets NI= {r'i}, N2 = {r"j} and intervals {J'i}, {J"j} for A

and B respectively, then

98

(x,y) • Jst--"* As(x) A Bt(y) > Ai(x) A Bj(y)

((s,t)_ (i,j))

(15)

where Jij _- J'i x J"j, is called the interval of (Ai x B j).

In fact,

(x, y) e Jst------_ x • J's, Y • J"t J--_ As(x) > Ai(x), Bt(y) > Bj(y)

(s,0 " (i,j)

min(As(x), Bt(y)) > min(Ai(x), Bj(y))

As(x) A at(y) > Ai(x) A Bj(y) (16)

we define the net of A × B as

N = {(x, y) I x = r'i, y = r"j} (17)

According to the definition of responsibility of fuzzy controller given in [3], we

state the following definition with slight changes.

Definition 3 A Fuzzy controller is said to be responsive if there exists an

interval L = (_oo, +oo) such that

L = {u I C*(u) = hgt C*(u)}. (18)

u• U

where hgtC*(u) is the height of fuzzy set C*(u) and L is the

responsive interval.

If a fuzzy controller is responsive, the output of the controller, according to the
defuzzification mean of maximum, is

u o = M(L) (u o• U), (19)

where M(L) means the mid-point of L.

Theorem 1, A given fuzzy controller is responsive as long as there exists a Net

N of A x B such that the intersection of N and the universe of

discourse (X x Y) is empty, i.e

99

N n X = ¢, (X.= X x Y)

Assume that N is the Net of A x B, which satisfiesformula (20), i.e

X=X-N

from formula (21), we derive that

V Jij=X= (X × Y)

i,j

so for any definite(xo, Yo) e (X x Y), there exist s, t, such that

(xo,Yo) e Jst.

From formula (16), for any s,ie I,t,je J,if(s,0 " (i,j),then

As(xo) A Bt(yo) > Ai(xo) A Bj(Y,)

(2O)

(21) "

(22)

(23)

According to formula (I0), the response of the fuzzy controller is as

follows

C*(u) = V (Ai(xo))A Bj(yo) A C#(i, j)(U)

id (24)

By formula (23), it is obvious that

M(C*) = M(f)

Where M(C*) = {ul C*(u) = hgtC*(u)}

M(f) = {u I f(u) _ hgt f(u)}

f(u) = (As(xo)) A Bt(yo) A C_(s, 0(u)

{Ck} = q_ is a distributed fuzzy set whoseAs it is known that Cq_(i, j)E

kernel is

obviously, there

Ker(Ck) = {u I Ck(u) = 1 } "

exists an interval L = (_oo +oo) such that

(25)
(26)

(27)

(28)

(29)

100

L = {u IC_(s,0(u) -_(As(xo)) A Bt(yo))}

= {ul f(u)= (As(xo)) A Bt(yo))}

= {u I C*(u) = hgtC*(u)}

therefore the fuzzy controller is responsive and uo = M(L).

(30)

3. The simplification of fuzzy controller algorithm

In the right-hand side of formula (10), there are I x J terms of union

operations. The ordinary algorithm does this calculations term by term and is

very time consuming. We know from Theorem 1 that when a fuzzy controller is

responsive and the defuzzification mean of maximum is used, we only need to

calculate the interval L, then the mid-point of L will be the desired output of

the fuzzy controller. Thus for all observed value (xo, yo), we only have to

calculate f(u), only one of the terms in the formula (10). This will simplify the

computation algorithm to a great extent.

Let

A£ = V Ai (31)

ie I

A£(x) = V Ai(x)
iel

(32)

B__ =V Bj (33)

jeJ

B£(y) = V Bj(y) (34)

jeJ

where x e X-{r'i}, y e Y-{r"j}. The membership functions of A£(x) and B£(y) are

shown in Figure 3-a.

101

t A(x)

r0 0 rl r2 r3 x, y

Figure 3-a The membership functions of A_(x) and B_(y)

0 Ul u 0 u2

Figure 3-b The function of pk([3)

Clearly, when (x, y) e Jst, i.e x e {r's-l, r's}, y ¢ {r"t-1, r"t}

A_(x) = As(x) > Ai(x),
B r.(y) = Bt(y) > Bj(y),

Ar_(x)/X B_(y) = As(x)/X at(y) > Ai(x)/x Bj(y)

V s,i e I, t,j e J, (s, t) * (i, j)

Define the separating functions tpl(X), tp2(y) respectively as follows,

_Ol(X) = i, x e {r'i-1, r'i},

tp2(y) = j, y e {r"j-1, r"j}.

For C e {Ck}, k e K, we define the following function

(35)
(36)

(37)

(38)

(39)

102

where L _ (_oo, +oo),

Pk(_) = M(L)= M(CkB), 13e [0, l] (40)

L _ U = {ulCk 2 13} (41)

where Ckl_ is the 13-cuted set of Ck and M(-) represents the mid-point of (-) as

shown in Figure 3-b. Since Ck(k e K) is normally distributedset, Pk(13)is a

continuous single-valued function of 13,V 13e [0, I]

So far as the functions A£(x), B£(y), <pl(X),q)2(Y)and Pk(13) are defined, we can

derive the following simplified algorithm for the responsive fuzzy controllers:

1) Given the inputs (xo, Yo) of the fuzzy controller,calculate

a = Az(xo), b = Br(yo), (42)

S "- q)l(Xo), t = q)Z(Yo), (43)

13= a A b = min(a,b). (44)

2) Calculate

k=q)(s,t), ke K (45)

where the q) is determined by the given control rules.

3) Finally, the output of the fuzzy controller can be obtained from

Uo = Ok(13) (46)

Obviously, LOU= {ulCk-_13}

= {u IC,p(s.0 -_(As(xo)) A Bt(yo))}

Uo = Pk(13)= M(L)

(47)

103

It can be seen that the result is exactly the same as that in formula (30).

The conventional fuzzy controller algorithm is very time consuming and needs

large memory space so that it is hardly possible to implement the fuzzy

composition inference on line in a control system. In many applications, fuzzy

controllers used look up tables instead of real time inference. Not only it is

impossible to tune the fuzzy control rules on line, it takes a great amount of

computation time to calculate the fuzzy controller look-up table. The simplified

algorithm proposed above reduces the computation greatly and its calculating

time is nearly the same as that taken by the conventional PID Control

algorithm. This makes it possible to do real time fuzzy inference in the

controller, allowing the tuning of control rules on line. If the algorithm is used

to calculate the fuzzy control look-up table, it takes less than one minute. Since

we only need to store 5 functions, namely Ax(x), BX(y), q_l(X), q_2(Y)and pk(13)

instead of all the Ai(x), Bj(y), and Ck(u), a total of I+J+K functions.

4. Hardware Implementation

'Fuzzy controller has been highly developed and come to a new stage of

hardware implementation. Many fuzzy controllers(or so called fuzzy inference

machines) in hardware are available in the market[4][5]. The conventional

ifuzzy inference algorithm on which most fuzzy controllers are based on is too

:complicated. Further, its hardware implementation is very expensive and of a

large volume, and the inference speed is limited. Reducing its cost and volume

_'and improving its inference speed are very important to this technology.

As can be seen from the last section that with the proposed algorithm, the

calculation is much simpler as there is no computation of fuzzy sets and most of

the calculations involve only function operations and comparative operations.

Therefore, this fuzzy control algorithm is very easy to implement in hardware.

The main issue in a hardware design is to construct some function generators

generating Ax(x), BX(y), ¢pl(X), ¢P2(Y) and Pk(13), while the complicated fuzzy set

operation which is difficult to turn into hardware counterparts is avoided.

104

Data Bus

xo Yo

['_',(x) [_1 (x)[IBz(y) _'2(y)
I I

FMin(a,b) Rules
- i _

'l' k

[- Ck(S)

u0

Figure 4 Block diagram of the fuzzy controller board

We have designed a fuzzy controller board for Personal Computers(PC) based

on the above algorithm. The principle of the fuzzy controller board is

illustrated in Figure 4. The board is composed of some function generators to

generate Ai(x), B£(y), q)l(X), q)2(Y)and pk(13), a comparator to do the operation

of Min(a, b) and a rule base to store the control rules. Each part is constructed

with digital IC. The detailed design of the hardware will be presented in depth

in our future papers.

The controller board is connected to the CPU through the data bus of the PC.

The generators of A£(x), B£(y), q)l(X), q)2(Y) and pk(13) and the control rules can

be programmed conveniently. Using this board with its software environment

on a personal computer, it is very flexible to construct a fuzzy control system

for an industrial process in which large number of data needed to be processed.

This is the reason why we design a fuzzy controller board instead of an

independent fuzzy controller machine which is unable to process data and
information.

Due to its fuzzy inference function and ability of data processing, the fuzzy

control system can be applied not only to the control system but also to many

other areas such as expert systems, pattern recognition and decision making

where the fuzzy inference method may be employed.

105

Reference

[1] G. Q. Chen, Analysis into the fuzzy control algorithm, Information and

Control, No.5(1980)

[2] M. Mizumoto, Fuzzy reasoning with "if...then

cybern., 1, 2927-2932(1980)

else", Applied sys. and

[3] P. Z. Wang and S. P. Lou, The responsibility of a fuzzy controller, IFAC 8th

Triennial World Cong., Kyoto, Japan, August 1981.

[4] T. Yamakawa, Fuzzy Controller Hardware System, Preprints of 2nd IFSA

Congress, Tokyo, July 1987.

[5] T. Yamakawa, A Simple Fuzzy Computer Hardware System Employing Min &

Max operation--A Challenge to 6th Generation Computer, Preprints of 2nd

IFSA Congress, Tokyo, July 1987.

106

Radar Signal Categorization using a Neural Network

James A. Anderson

Department of Cognitive and Linguistic Sciences

Box 1978

Brown University, Providence, RI 02912

and

Michael T. Gately, P. Andrew Penz, and Dean R. Collins

Central Research Laboratories, Texas Instruments

Dallas, Texas 75265

Accepted for Publication, IEEE Proceedings
To appear, August,-7-f990

(c) IEEE

This research was Inltially supported by Texas Instruments, the Office of Naval
Research (Contract N00014-86-K-0600 to J.A.) and the National Science Foundation
(Grant BNS-85-18675 to J.A.). Currently, this research is supported by the Avionics

Laboratory, Wright Research and Development Center, Aeronautical Systems Division
[Contract F33615-87-C1454].

107

Radar Signal Categorization Using a Neural Network

Abstract

Neural networks were used to analyze a complex simulated radar

environment which contains noisy radar pulses generated by many

different emitters. The neural network used is an energy
minimizing network (the BSB model) which forms energy minima --

attractors in the network dynamical system -- based on learned
input data. The system first determines how many emitters are
present (the delnterleavlng problem). Pulses from individual

simulated emitters give rise to separate stable attractors in the
network. Once individual emitters are characterized, it is

possible to make tentative identifications of them based on their
observed parameters. As a test of this idea, a neural network

was used to form a small data base that potentially could make
emitter identifications.

We have used neural networks to cluster, characterize and identify radar signals
from different emitters. The approach assumes the ability to monitor a region of the

microwave spectrum and to detect and measure properties of received radar pulses.
The microwave environment is assumed to be complex, so there are pulses from a number

of different emitters present, and pulses from the same emitter are noisy or their
properties are not measured vlth great accuracy.

For several practical applications, it is important to be able to tell quickly,
first, how many emitters are present and, second, what their properties are. In

other words time average prototypes must be derived from time dependent data without

a tutor. Finally the system must tentatively identify the prototypes as members of
previously seen classes of emitter.

Stages of Processing. We accomplish this task in several stages. Figure 1
shows a bl_k diagram of the resulting system, which contains several neural

networks. The system as a whole is referred to as the Adaptive Network Sensor
Processor (ANSP).

Figure 1 About Here

In the block diagram given in Figure I, the first block is a feature extractor.
We start by assuming a microwave radar receiver of some sophistication at the input

to the system. This receiver is capable of processing each pulse into feature
values, i.e. azimuth, elevation, signal to noise ratio (normalized intensity),

frequency, and pulse width. This data is then listed in a pulse buffer and tagged
vlth time of arrival of the pulse. In a complex radar environment, hundreds or
thousands of pulses can arrive in fractions of seconds, so there is no lack of data.

The problem, as in many data rich environments, is making sense of it.

108

The second block in Figure 1 is the delnterleaver which clusters incoming radar

pulses into groups, each group formed by pulses from a single emitter. A number of

pulses are observed, and a neural network computes, off llne, how many emitters are
present, based on the sample, and estimates their properties. That is, it solves the
so-called deinterleaving problem by identifying pulses as being produced by a

particular emitter. This block also produces and passes forward measures of the each
cluster's azimuth, elevation, SNR, frequency and pulse width.

The third block, the _ pattern extractor, uses the deinterleaved information
to compute the pulse repetitlon pattern of an emitter by using the times of arrival
for the pulses that are contained in a given cluster. This information viii be used

for emitter classification.

The fourth block, the tracker, acts as a long term memory for the clusters found

in the second block, storing the average azimuth, elevation, SNR, frequency, and

pulse width. Since the diagram in Figure I is organized via initial computational
functionality, the tracking module follows the delnterleaver so as to store its

outputs. In an operationally organized diagram, the tracker is the first block to
receive pulse data from the feature extractor. It must identify most of the pulses
in real time as previously learned by the deinterleaver module and only pass a small
number of unknown pulses back to the delnterleaver module for further learning. The

tracker also updates the cluster averages. Their properties can change with time

because of emitter or receiver motion, for example.

The fourth and fifth blocks, the tracker and the classifier operate as a unit to

classify the observed emitters, based on information stored in a data base of emitter

types. Intrinsic emitter properties stored in these blocks are frequency, pulse
width and pulse repetition pattern.

The most important question for the ANSP to answer is what the emitters might be
and what can they do. That is, "who is looking at me, should I be concerned, and

should I (or can I) do something about it?"

Emitter Clustering. Most of the initial theoretical and simulation effort in
this project has been focused on the deinterleaving problem. This is because the

ANSP is being asked to form a conception of the emitter environment from the data
itself. A teacher does not exist for most interesting situations.

In the simplest case, each emitter emits with constant properties, i.e. no

noise is present. Then, determining how many emitters were present would be trivial:
simply count the number of unique pulses via a look up table. Unfortunately, data is
often moderately noisy because of receiver, environmental and emitter variability,

and, sometimes, because of the frequent change of one or another emitter property at
the emitter. Therefore, simple identity checks will not work. It is these later

cases which this paper will address.

Many neural networks are supervised algorithms, that is, they are trained by
seeing correctly classified examples of training data and, when new data is presented
will identify it according to their past experience. Emitter identification does not
fall into this category because the correct answers are not known ahead of time.

That, after all, is the purpose of this system. The basic problem of a

self-organlzing clustering system has many historical precedents in cognitive
science. For example, William James, in a quotation well known to developmental

psychologists, wrote around 1890,

109

..the numerous inpouring currents of the baby bring to his
consciousness ... one big blooming buzzing Confusion. That
Confusion is the baby's universe; and the universe of all of us
is still to a great extent such a Confusion, potentially
resolvable, and demanding to be resolved, but not yet actually
resolved into parts.

William James (1890, p.29)

We now know that the new born baby is a very competent organism, and the
outlines of adult perceptual preprocessing are already in place. The baby is
designed to hear human speech in the appropriate way and to see a world like ours:
that is, a baby is tuned to the environment in which he will live. The same is true
of the ANSP, which must process pulses which will have feature values that fall
within certain parameter ranges. That is, an effective feature analysis has been
done for us by the receiver designer, and we do not have to organize a system from
zero. This means that we can use a less general approach than we might have to in a
less constrained problem. The result of both evolution and good engineering design
is to build so much structure into the system that a problem, very difficult in its
general form, becomes quite tractable.

At this point, neural networks are familiar to many. Introductions are
available, for example, McClelland and Rumelhart, 1986; Rumelhart and ScClelland,
1986; Hinton and Anderson, 1989; Anderson and Rosenfeld, 1988.

The Linear Associator. Let us begin our discussion of the network we shall use
for t-h-e radar problem wlth the 'outer product' assoclator, also called the 'linear

assoclator,' as a starting point. (Kohonen, 1972, 1977, 1984; Anderson, 1972). We

assume a single computing unit, a simple model neuron, acts as a linear summer of its
inputs. There are many such computing units. The set of activities of a group of
units is the system state vector. Our notation has matrices represented by capital

letters (A), vectors by lower case letters (f,g), and the elements of vectors as f(1)

or g(J). A vector from a set of vectors is subscripted, for example, fl' f2

The ith unit in a set of units will display activity g(i) when a pattern f(j) is
presented _'6 its inputs, according to the rule,

g(1) = z A(i,j) f(j).
J

where A(i,j) are the connections between the ith unlt in an output set of units and
the jth unit in an input set. Ne can then _-an write the output pattern, g, as the
matrix--_ultiplication

g=Af.

During learning, the connection strengths are modified according to a

generalized Hebb rule, that is, the change in an element of A, 6A(i,J), is given by

110

_A(i,j) _ f(j) g(1),
k k

where f and g are vectors associated with the kth learning example.
k k

Then we can write the matrix A as a sum of outer products,

n T

A=_r. gf
k=l k k

where _ is a learning constant.

Prototype Formation The linear model forms prototypes as part of the storage

process, a property we will draw on. Suppose a category contains many similar items

associated with the same response. Consider a set of correlated vectors, {fk }, with

mean p.

f =p+d •
k k

The final connectivity matrix will be

n T

A= tIZgf
k=l k

T n T

rg (np + r. d)
k=1 k

If the sum of the dk is small, the connectivity matrix is approximated by

T

A = _ g p •

The system behaves as if it had repeatedly learned only one pattern, p, and responds
best to it, even though p, in fact, may never have been learned.

Concept forming systems. Knapp and Anderson (1984) applied this model directly
to the formation of simple psychological 'concepts' formed of nine randomly placed
dots. A 'concept' in cognitive science describes the common and important situation

where a number of different objects are classed together by some rule or similarity

relationship. Much of the power of language, for example, arises from the ability to
see that physically different objects are really 'the same' and can be named and

responded to in a similar fashion, for example, tables or lions. A great deal of

experimentation and theory in cognitive science concerns itself with concept
formation and use.

There are two related but distinct ways of explaining simple concepts in neural
network models. First, there are prototype forming systems, which often involve

taking a kind of average during the act of storage, and, second, there are models
which explain concepts as related to attractors in a dynamical system. In the radar

ANSP system tO be described we use both ideas: we want to construct a system where

111

the average of a category becomes the attractor in a dynamical system, and an
attractor and its surrounding basin represent an individual emitter. (For a further

discussion of concept formation in simple neural networks, see Knapp and Anderson,

1984; Anderson, 1983, and Anderson and Murphy, 1986).

Error Correction. By using an error correcting technique, the Widrow-Hoff
proce_, we can force the simple associative system to give us more accurate
associations. Let us assume we are working with an autoassoclatlve system. Suppose

information is represented by associated vectors fl _ fl, f_ _ f..... A vector,

fk' is selected at random. Then the matrix, A, Is'incremented a_cording to the rule

T

nA = _ (f - Af) f
k k k

where _A is the change in the matrix A. In the radar application, there is no

_correct answer' in the general sense of a supervised algorithm. However every input
pattern can be its own _teacher' in the error correction algorithm in that the

network will try to better reconstruct that particular input pattern. The goal of
learning a set of stimuli {f} is to have the system behave as

Af=f

k k

The error correcting learning rule will approximate this result with a least mean
squares approximation, hence the alternative name for the Vidrow-Hoff rule: the LMS
(least mean squares) algorithm. The autoassociative system combined with error
correction, when working perfectly, is forcing the system to develo p a particular set
of eigenvectors with eigenvalue 1.

The elgenvectors of the connection matrix are also of

Hebblan learning is used in an autoassociative system.
product assoclator has the form

interest when simple
Then, the simple outer

T

AA= _]f f .
k k

There is now an obvious connection between the elgenvectors of the resulting
outer product connectivity matrix and the principal components of statistics, because
the form of this matrix is the covariance matrix. In fact, there is growing evidence

that many neural networks are doing something like principal component analyis.
(See, for example, Baldi and Hornik, 1989 and Cottrell, Munro and Zipser, 1988).

BSB: A.D_namical System. We shall use for radar clustering a non-linear model
that t--'_es- the basic linear assoclator, uses error correction to construct the

connection matrix, and uses units containing a simple limiting non-llnearlty.

Consider an autoassociatlve feedback system, where the vector output from the matrix

is fed back into the input. Because feedback systems can become unstable, we
incorporate a simple limiting non-linearity to prevent unit activity from getting too

large or too small. Let f[i] be the current state vector describing the system.
f[0] is the vector at step O. At the i+lst step, f[i+l], the next state vector, is
given by the Iteratlve equation,

112

f[i÷l] = LIMIT [_A f[i] + y f[i] + _ f[O]].

We stabilize the system by bounding the element activities within limits.

The first term, _Af[i], passes the current system state through the matrix and
adds information reconstructed from the autoassociatlve cross connections. The

second term, 1_f[i], causes the current state to decay slightly. This term has the

qualitative effect of causing errors to eventually decay to zero as long as y is

less than I. The third term, 6f[O], can keep the initial information constantly
present and has the effect of limiting the flexibility of the possible states of the

dynamical system since some vector elements are strongly biased by the initial input.

Once the element values for f[i+l] are calculated, the element values are

'limited', that is, not allowed to be greater than a positlve limit or less than a

negative limit. This is a particularly simple form of the sigmoldal nonlinearity
assumed by most neural network model. The limiting process contains the state vector
within a set of limits, and we have previously called this model the 'brain state in

a box' or BSB model. (Anderson, Silverstein, Ritz, and Jones, 1977; Anderson and

Mozer, 1981) The system is in a positive feedback loop but is amplitude limited.

After many iterations, the system state becomes stable and will not change: these

points are attractors in the dynamical system described by the BSB equation. This
final state will be the output of the system. In the fully connected case with a

symmetric connection matrix the dynamics of the BSB system can be shown to be

minimizing an energy function. The location of the attractors is controlled by the
learning algorithm. (Hopfield, 1982; Golden, 1986). Aspects of the dynamics of this

system are related to the 'power' method of eigenvector extraction, since repeated
iteration will leada to activity dominated by the eigenvectors with the largest
postive elgenvalues. The signal processing abilities of such a network occur because
elgenvectors arising from learning uncorrelated noise will tend to have small

elgenvalues, while signal related eigenvectors will be large, will be enhanced by
feedback, and will dominate the system state after a number of iterations.

We might conjecture that a category or a concept derived from many noisy
examples would become identified wlth an attractor associated with a region in state

space and that all examples of the concept would map into the point attractor. This
is the behavior we want for radar pulse clustering.

Neural Network Clusterin G Algorithms. We know there will be many radar pulses,
but we _o not know the detailed descriptions of each emitter Invoved. We want to

develop the structure of the microwave environment, based on input information. A

number of models have been proposed for this type of task, including various
competitive learning algorithms (Rumelhart and Zipser, 1986; Carpenter and Grossberg,
1987).

Each pulse is different because of noise, but there are only a small number of
emitters present relative to the number of pulses. We take the input data
representing each pulse and form a state vector with it. A sample of several hundred

pulses are stored in a 'pulse buffer.' We take a pulse at random and learn it, using
the Widrow-Hoff error correcting algorithm with a small learning constant. Since
there is no teacher, the desired output is assumed to be the input pulse data.

Learning rules for this class of dynamical system, Hebbian learning in general,

(Hopfield, 1982) and the Widrow-Hoff rule in particular, are effective St 'digging
holes in the energy landscape' so they fall where the vectors that are learned are.

That is, the final low energy attractor states of the dynamical system when BSB

I13

dynamics are applied will tend to lie near or on stored information. Suppose ve
learn each pulse as it comes in, using Widrow Hoff error correction, but with a small

learning constant. Metaphorically, we 'dig a little hole' at the location of the
pulse. But each pulse is different. So, after a while, we have dug a hole for each

pulse, and if the state vectors coding the pulses from a single emitter are not too

far apart'-[n state space, we have for--_da-na'ttr--_or t-h--_ontalns al-[-the--puls-_
'-{oma slngl-emi-tter, as well as new pulses from the same emitter. Figure 2

presents a (somewhat fanciful) picture of the behavior that we hope to obtain, where

many nearby data points combine to give a single broad network energy minimum that
contains them all.

Figure 2 about here

We can see why this behavior will occur from an informal argument. Call the
average emitter state vector of a particular emitter p. Then, every observed pulse,

fk' will be

f=p+d,
k k

where dk is a distortion, which will be assumed to be different for every individual
pulse, that is, different db are uncorrelated, and are relatively small compared to
p. With a small learning constant, and with the connection matrix A starting from

zero, the magnitude of the output vector, Af, will also be small after only a few

pulses are learned. This means that the error vector will point outward, toward fk'

that is, toward P+dk, as shown in Figure 3.

Figure 3 about here

Early in the learning process with a small learning constant for a particular
cluster, the error vectors (input minus output) all will point toward the cluster of
input pulses. Widrow Hoff learning can be described as using a simple associator to

learn the error vector. Since every d k is different and uncorrelated, the error
vectors from different pulses will have the average direction of p. The matrix will
act as if it is repeatedly learning p, the average of the vectors. It is easy to
show that if the centers of different emitter clusters are spaced far apart, in
particular, if the cluster centers are orthogonal, then p will be close to an
eigenvector of A. In more interesting and difficult cases, where clusters are close
together or the data is very noisy, it is necessary to resort to numerical simulation
to see how well the network works in practice. As we hope to show, this technique
does work quite well.

After the matrix has learned so many pulses that the input and output vectors

are of comparable magnitude, the output of the matrix when p + dk is presented will
be near p. (See Figure 4) Then,

114

p =Ap.

Over a number of learned examples,

total error = E (p+dl - A(p+d)
k k

= E (d - Ad)
k k

The maximum values of the eigenvalues of A are 1 or below, the d's are

and this error term will average to zero.
uncorrelated,

Figure 4 about here

However, as the system learns more and more random noise, the average magnitude
of the error vector will tend to get longer and longer, as the elgenvalues of A

related to the noise become larger. Note that system learning never stops because
there is always an error vector to be learned, which is a function of the intrinsic

noise in the system. Therefore, there is a 'senility' mechanism found in this class

of neural networks. For example, the covarlance matrix of independent, identically

distributed Gausslan noise added to each element is proportional to the identity
matrix, then every vector becomes anelgenvector with the same elgenvalue, and this
matrix is the matrix toward which A will evolve, if it continues to learn random

noise indefinitely. When the BSB dynamics are applied to matrices resulting from

learning vey___Zlarge numbers of noisy pulses, the attractor basins become fragmented,
so that the clusters break up. However, the period of stable cluster formation is

very long and it is easy to avoid clus[er breakup in practice. (Anderson, 1987)

In BSB clustering the desired output is a particular stable state. Ideally, all

pulses from one emitter will be attracted to that final state. Therefore a simple

identity check is now sufficient to check for clusters. This check is performed by
resubmitting the original noisy pu!ses to the network that has learned them and

forming a list of the stable states that result. The llst is then compared with
itself to find which pulses came from the same emitter. For example, a symbol could
be associated with the pulses from the same final state, i.e. the pulses have been
deinterleaved or identified.

Once the emitters have been identified, the average characteristics of the
features describing the pulse (frequency, pulse width and pulse repetition pattern)

can be computed. These features are used to classify the emitters with respect to
known emitter types in order to 'understand' the microwave environment. A two stage
system, which first clusters and then counts clusters is easy to implement, and,

practically, allows convenient _hooks' to use traditional digital techniques in
conjunction with the neural networks.

Stimulus Coding and Representation. The fundamental represention assumption of
almost all neural ne"-_worksis that information is carried by the pattern or set of
activities of many neurons in a group of neurons. This set of activities carries the

115

meaning of whatever the nervous system Is dolng and these sets of activities are

represented as state vectors. The conversion of input data into a state vector, that

is, the representation of the data in the network, is the single most important

engineering problem faced in networkS. In our opinlon'_-'choice of-_ood input
and output representatroS-is usually more important for the ultimate success of the
system than the choice of a particular network algorithm or learning rule.

We now suggest an explicit representation of the radar data. From the radar
receiver, we have a number of continuous valued features to represent: frequency,

elevation, azimuth, pulse width, and signal strength. Our approach is to code
continuous information as locations on a topographic map, i.e. a bar graph or a

moving meter pointer. We represent each continuous parameter value by location of
block of activation on a linear set of elements. Increase in a parameter value moves

the block of activity to the right, say, and a decrease, moves the activity to the

left. We have used a more complex topographic representation in several other
contexts, with success. (Sereno, 1989; Rossen, 1989; Viscuso, Anderson, and Spoehr,
1989).

We represent the block/bar of activity value with a block (three or four) "=",

equal, symbols placed in a region of ".", period, symbols. Single characters are
coded by eight bit ASCII bytes. The ASCII 1's and O's are further transformed to

+l's and -l's, so that the magnitude of any feature vector is the same regardless of
the feature value. Input vectors are therefore purely binary. On recall, if the

vector elements coding a character do not rise above a threshold size, the system is
not 'sure' of the output. Then that character is represented as the underline, " ",
character. Being 'not sure' can be valuable information relative to the confideSce

of a particular output state relative to an input. Related work has developed a more

numeric, topographic representation for this task, called a 'closeness code' (Penz,
1987) which has also been successfully used for clustering of simulated radar data.

Neural networks can incorporate new information about the signal and make good
use of it. This is one version of what iscalled the data fusion or sensor fusion

problem. To code the various radar features, ve simply concatenate the topograph-'[c

vectors of individual feature into a single long state vector. Bars in different
fields code the different quantities. Figure 5 shows these fields.

Figure 5 about here

Below we will gradually add information to the same network to show the utility
of this fusion methodology. The conjecture is is that adding more information about

the pulse will produce more accurate clustering. Note that we can insert 'symbolic'
information (say word identifications or other appropriate information) in the state

vector as character strings, forming a hybrid code. For instance the state vector
can contain almost unprocessed spectral data together vlth the symbolic bar graph
data combined with character strings representing symbols at the same time.

A Demonstration. For the simulations of the radar problem that we describe

next, we used a BSB system with the following properties. The system used 480 units,
representing 60 characters. Connectivity was 25_, that is, each element was
connected at random to 120 others. There were a total of 10 simulated emitters with

considerable added intrinisic noise. A pulse buffer of 510 different pulses was used
for learning and, after learning, I00 new pulses, 10 from each emitter were used to

116

test the system. There were about 2000 total learning trials, about that is, about

four presentations per example. Parameter values were _ = 0.5, y = 0.9 and 6 = O.
The limits for thresholding were +2 and -2. None of these parameters were critical,
in that moderate variations _of the parameters had little effect on the resulting
classifications of the network.

Suppose we simply learn frequency information. Figure 6 shows the total number
of attractors formed when ten new I examples of each of ten emitters were passed

through the BSB dynamics, using the matrix formed from learning the pulses in the

pulse buffer. In a system that clustered perfectly, exactly I0 final states would
exist, one different final state for each of the ten emitters. However, with only

frequency information learned, all the i00 different inputs mapped into only two
attractors.

Figure 6 about here

Figure 6 and others like it below are graphical indications of the similarity
between recalled clusters or states wlth computational energy minima. The states

shown In the figures are ordered via a priori knowledge of the emitters, although
this information was obviously not given to the network. One can visually interpret

the outputs for equality of two emitters (lumping of different emitters) or

separation of outputs for a single emitter (splitting of the same emitter) in the
outputs. This display method is for the reader's beneflt."--_he ANSP system
determines the number and state vector of separate minima by a dot product search of

the entire output list, as discussed above. Position of the bar of '='s codes the

frequency in the frequency field which is the only field learned in thls example.

Let us now give the system additional information about pulse azimuth and

elevation. Clustering performance improves markedly, as shown In Figure 7. We get
nlne different attractors. There is still uncertainty in the system, however, since

few corners are fully saturated, as indicated by the underline symbols on the corners
of some bar's. States I and 3 are in the same attractor, an example of incorrect

_lumping' as a result of insufficient information. Two other final states (8 and 9)

are very close to each other in Hamming distance.

Figure 7 about here

Let us assume that future advances in receivers wlll allow a quick estimation of

the microstructure of each radar pulse. We have used, as shown in Figure 8, a coding

which is a crude graphical version of a Fourier anlysis of an individual pulse, wlth

the center frequency located at the middle of the field. Emitter pulse spectra were

assigned arbitrarily.

117

Figure 8 about here

Note that the spectral information can be included in the state vector in only
slightly processed form: we have included almost a caricature of the actual

spectrum.

Addition of spectral information improved performance somewhat. There were nine
distinct attractors, though still many unsaturated states. Two emitters were still

_lumped', 8 and 9. Figure 9 shows the results.

Figure 9 about here

Suppose ve add information about _ width to azimuth, elevation, and
frequency. The simulated pulse wldth informatlon_ery poor. It actually degrades

performance, though it does allow separation of a couple of nearby emitters. The
results are given in Figure I0.

Figure 10 about here

The reason pulse width data is of poor quality and hurts discrimination is
because of a common artifact due to the way that pulse width is measured. When two

pulses occur close together in time a very long pulse width is measured by the
receiver circuitry. This can give rise in unfavorable cases to a spurious blmodal

distribution of pulsevidths for a single emitter. Therefore, a single emitter seems
to have some short pulse widths and some very long pulse widths and this can split

the category. Bimodal distributions of an emitter parameter, when the peaks are
widely separated, is a hard problem for any clustering algorlthm. A couple of

difficult discriminations in this simulation, however, are aided by the additional
data.

We now combine a!l this information about pulse properties together. None of
the subsets of Ino_matlon could perfectly cluster the emitters. Pulse width, in

particular, actually hurt performance. Figure Ii shows that, after learning, using
all the information, we now get ten well separated attractors, i.e. the correct
number of emitters relative to the data set. The conclusion is that the additional

information, even if it was noisy, could be used effectively. Poor information could

be combined vlth other poor information to give good results.

118

Figure ii about here

Processin_ After Deinterleaving. Having used the ANSP system to deinterleave
and cluster dat-a_, we also have a way of producing an accurate picture of each
emitter. We now have an estimate of the frequency and pulse width and can derive
other emitter properties (Penz et.. al., 1989), for example, the emitter pulse
repetition pattern. One method to learn this pattern is to learn pulse repetition
interval (PRI) pairs autoassociatively. Another is to autocorrelate the PRI's of a
string. This technique probably provides more information than any other for
characterizing emitters, because the resulting correlation functions are very useful
for characterizing a particular emitter type.

Classification Problem and Neural Network Data Bases. The next task is to

classify the observed emltters based on our _ev oul-6-us-experiencewith emitters of

various types. We continue with the neural network approach because of the ability
of networks to incorporate a great deal of information from different sensors, their

ability to generalize (i.e. _guess') based on noisy or incomplete information, and
their ability to handle ambiguity. Known disadvantages of neural networks used as
data bases are their slow computation using traditional computer architectures,

erroneous generalizations (i.e. _bad guesses'), their unpredictability, and the
difficulty of adding new information to them, which may require time consuming

relearning.

Information, in traditional expert systems, is often represented as collections

of atomic facts, relating pairs or small sets of items together. Expert systems
often assume 'IF (x) THEN (y)' kinds of information representation. For example,

such a rule in radar might look like:

IF (Frequency is I0 gHz)

AND (Pulse Width is 1 microsecond)
AND (PRI is constant at I kHz)

THEN (Emitter is a Kllngon air traffic control radar).

Problems with this approach are that rules usually have many exceptions, data

may be erroneous or noisy, and emitter parameters may be changed because of local
conditions. Expert systems may be exceptionally prone to confusion when emitter

properties change because of the rigidity of their data representation. Neural
networks allow a different strategy: Always try to use as much information as you

have, because, in most cases, the more information you have, the better performance
will be.

As William James commented in the nineteenth century,

... the more other facts a fact is associated with in the mi_
the b"6_te-r posession of- It our memor Z reta--i-6-s.Ea--C-Kot Its
assoc_-_ becomes a hook--to--whic--h--It_gs, a means to fish it

up by when sunk beneath the surface. Together, they form a
network of attachments by which it is woven into the entire

119

tissue of our thought.
William James (1890). p. 301

Perhaps, as William James suggests, information is best represented as large
sets of correlated information. We could represent this in a neural network by a

large, multlmodal state vector. Each state vector contains a large number of _atomic

facts' together with their cross correlations. Our clustering demonstration showed
that more information could be added and used efficiently and that identification

depends on a cluster of information co-occuring. (See Anderson, 1986 for further
discussion of neural network data bases of this type.)

Ultimately, we would like a system that would tentatively

based on measured properties and previously known information.

operation, that parameters can and often do change, we can never

answers.

identify emitters

Since we know, in

be sure of the

As a specific important example, radar systems can shift parameters in ways

consistent with their physical design, that is, waveguide sizes, power supply size,

and so on, for a number of reasons, for example, weather conditions. If an emitter

is characterized by only one parameter, and that parameter is changed, then

identification becomes very unlikely. Therefore, accuracy of measurement of a

partlcular parameter may not be as useful for classification as one might expect.

However, using a whole set of co-occurlng properties, each at low precision, may

prove a much more efficient strategy for identification. For further discussion of
how humans often seem to use such a strategy in perception, consult George Miller's

classic 1956 paper, "The magic number seven, plus or minus two."

Classification Problem for Shifted Emitters. Our first neural net

ciassificat'ion simulation 'is s--_cifically desig'ned to study sensitivity to shifts in

parameters. Two data sets were generated. One set has _normal' emitter properties

and the other set had all the emitter properties changed about I0 percent. The two

sets each contained about 500 data points. The names used are totally arbitrary.
The state vector was constructed of a name string (the first I0 characters) and bar

codes for frequency, pulse width, and pulse repetition interval. For the

classification function, the position of "+" symbols indicates the feature magnitude

while the blank symbol fills the rest of the feature field. Again the "_" symbol

indicates an undecided node.

Figures 12 and 13 show the resulting attractor interpretations. Figure 12 shows

the vectors to be learned autoassociatively by the BSB model. The first field is the

emitter name. The last three fields represent the numerical information produced by

the delnterleaver and pulse repetition interval modules. An input consists of

leaving the identification blank and filling in the analog information for the
emitter which one wants an identification. The autoassocatlve connections fill in

the missing identification information.

Figure 12 shows the identifications produced when the normal set is provided to

the matrix: all the names are produced correctly and in a small number of iterations

through the BSB algorithm. Figure 13 uses the same matrix, but the input data is now

derived from sources whose mean values are shifted about 10 percent, to emulate this

parameter shift.

120

Figure 12 about here

Figure 13 about here

There were three errors of classification. Emitter 3 was classified as _Airborn In'

instead of 'AA FC'. Emittter 4 was classified as _SAM target' instead of 'Airborn

In'. Emitter 7 was classified as 'Airborn In' rather than the correct 'SAM Target'

name. Note that the recalled analog information is also not exactly the correct

analog information even for the correctly identified emitters. At a finer scale, the

number of iterations required to reach an attractor state was very long. This is a
direct measure of the uncertainty of the neural network about the shifted data. Some

of the final states were not fully limited, another indication of uncertainty.

Large Classification Data Bases. It would be of interest to see how the system
worked with a larger data _--a-_. S-_e information about radar systems is published in

Jane's Weapon Systems (Blake, 1988). We can use this data as a starting point to see
a neur_network might scale to larger systems. Figure 14 shows the kind of data

available from Jane's. Some radars have constant pulse repetition frequency (PRF)

and others have highly variable PRF's. (Jane's lists Pulse Repetition Frequency

(PRF) in its tables instead of Pulse Repetition Interval (PRI). We have used their

term for their data in this simulation.) We represented PRF variability in the state

vector coding by increasing the last bar width (Field 7, Figure 15) for highly

variable PRF's (see the Swedish radar, for an example.) Also, when a parameter is out

of range (the average PRF of the Swedish radar) it is not represented.

Figure 14 about here

Figure 15 about here

We perform the usual partitioning of the state vector into fields, as shown in

Figure 15. For this simulation, the frequency scale is so coarse that even enormous

changes in frequency would not change the bar coding significantly. We are more

interested here in whether the system can handle large amounts of Jane's data. We

taught the network 47 different kinds of radar transmitters. Some transmitter names

were represented by more than one state vector because they can have several, quite
different modes of operation, that is, the parameter part of the code can differ

significantly from mode to mode. (The clustering algorithms would almost surely pick

121

up different modes as different clusters.) After learning, we provided the measured

properties to the the transmitter to see if it could regenerate the name of the
country that the radar belonged to. There were only three errors of retrieval from

47 sets of input data, corresponding to 94 percent accurate country identification.
This experiment was basically coding a lookup table, using low precision

representations of the parameters. Figure 16 shows a sample of the output, wlth
reconstructions of the country, designations, and functions.

Figure 16 about here

Conclusions. We have presented a system using neural networks which is capable
of clustering and identifying radar emitters, given as input data large numbers of
received radar pulses and with some knowledge of previously characterized emitter

types.

Good features of this system are its robustness, its ability to integrate
information from co-occurance of many features, and its ability to integrate

information from individual data samples.

We might point out that the radar problem is similar to data analysis problems
in other areas. For example, it is very similar to a problem in experimental

neurophyslology, where action potentials from multiple neurons are recorded vlth a
single electrode. Applications of the neural network techniques described here may
not be limited to radar signal processing.

References

Anderson, J.A. (1972), A simple neural network generating an interactive

memory, Mathematical Biosclences, 14, 197-220.

Anderson, J.A. (1983), Neural models for cognitive

Transactions: Systems r _ and Cybernetics, SMC-13, 799-815.

computation. IEEE

Anderson, J.A. (1986), Cognitive Capabilities of a Parallel System. In E.

Bienenstock, F. Foglemann, and G. Weisbuch. (Eds.) Disordered Systems and
Biological Organization, Berlin: Springer.

Anderson, J.A. (1987), Concept formation in neural networks: Implications for

evolution of cognitive functions. Human Evolution, 2, 1987.

Anderson, J.A. and Mozer, M.C. (1989), Categorization and selective neurons,

In: G.E. Hinton and J.A. Anderson (Editors), P_ra_!el Models of Associative Memory
_Rev. Ed.l, Hillsdale, NJ: Erlbaum.

Anderson, J.A. and Murphy, G.L. (1986), Psychological Concepts in a Parallel
System. In J.D. Farmer, A. Lapedes, N. Packard, and B. Vendroff. (Eds.)

Evolutlon_ Games_ and Learning.. New York: North Holland.

122

Anderson, J.A. and Rosenfeld, E., Eds. (1988) Neurocomputing: Foundations of

Research, Cambridge, HA: HIT Press.

Anderson, J.A., Silversteln, J.W, Ritz, S.A., and Jones, R.S., Distinctive

features, categorical perception, and probability learning: Some applications of a

neural model, Psychological Review, 84, 413-451.

Baldi, P. and Hornik, K. (1989), Neural networks and principal component

analysis: Learning from examples without local minima. Neural Networks, 2, 53.

Blake, B. (Editor), (1988), Jane's Weapon Systems, (19th Edition), Surrey,
U.K,: Jane's Information Group.

Carpenter, G. and Grossberg, S. (1987), ART 2: self organization of stable

category recognition codes for analog input patterns, Applied Optics, 26, 4919-4942.

Cottrell, G.W., Munro, P.W. and Zipser, D. (1988). Image compression by back

propagation: A demonstration of extensional programming. In N.E. Sharkey (Ed.),

Advances in Cognitive Science r Vol. 3. Norwood, NJ: Ablex.

Golden, R.M. (1986), The "Brain state in a box" neural model is a gradient

descent algorithm, Journal of Mathematical Psychology, 30, 73-80.

Hinton, G.E. and Anderson, J.A. (Eds., 1989), Parallel Models of Associative

Memor Z !Rev. Ed.l, Hillsdale, NJ: Erlbaum.

James, W. (1961/1894), Briefer Psychology, New York_ Collier.

Knapp A. and Anderson, J.A. (1984), A theory of categorization based on

distributed memory storage. Journal of Experimental Psychology: Learning_ Memory

and Cognition. 2, 610-622.

Kohonen, T. (1972).

Computers, C-21, 353-359.

Correlation matrix memories, IEEE Transactions on

Kohonen, T. (1977). Associative Memory. Berlin: Springer.

Kohonen, T. (1984). Self Organization and Associative Memory. Berlin:

Springer.

McClelland, J.L. and Rumelhart, D.E., Eds.

Processing, Volume 2, Cambridge, HA: MIT Press.

(1986), Parallel r Distributed

Miller, G.A. (1956), The magic number seven, plus or minus twos Some limits on

our capacity for processing information, Psychological Revlew,63, 81-97.

Penz, P.A. (1987), The closeness code, Proceedings of IEEE International
Conference on Neural Networks, III-515, IEEE Catalog 87th0191---7.

Penz, P.A., Katz, A.J., Gately, M.T., Collins, D.R. and Anderson, J.A. (1989),

Analog capabilities of the BSB model as applied to the anti-radiation homing missile

problem, Proceedings of the International Joint Conference on Neural Nets, II-7.

Rossen, M.L. (1989). Speech Syllable Recognition with a Neural Network, Ph.D.

Thesis, Department of Psychology, Brown University, Providence, RI 02912, May, 1989.

123

Rumelhart, D.E. and McClelland, J.L., Eds. (1986), Parallel r Distributed

Processin_ Volume i, Cambridge, MA: MIT Press.

Rumelhart, D.E. and Zipser, D. (1986), Feature discovery by competitive

learning, In D.E. Rumelhart, and J.L. McClelland, Eds., Parallel_ Distributed

Processln_, Volume I, Cambridge, HA: MIT Press.

Sereno, M.E. (1989)A Neural Network Model of Visual Motion Processing, Ph.D.

Thesis, Department of Psychology, Brown University, Providence, RI, May, 1989.

Vlscuso, S.R., Anderson, J.A. and Spoehr, K.T., (1989) Representing simple
arithmetic in neural networks, In G. Tiberghien, Ed., Advanced Cognitive Science:

Theor Z and Applications , London: Horwoods.

124

Figures for

Radar Signal Categorization using a Neural Network

James A. Anderson

Department of Cognitive and Linguistic Sciences

Box 1978

Brown University, Providence, RI 02912

and

Michael T. Gately, P. Andrew Penz, and Dean R. Collins

Central Research Laboratories, Texas Instruments

Dallas, Texas 75265

125

Figures, Anderson, Gately, Penz and Collins

Caption, Figure 1

Block diagram of the radar clustering and categorizing system.

Caption, Figure 2

Landscape surface of system energy. Several learned examples may
contribute to the formation of a single energy minimum which wlll

correspond to a single emitter. This drawing is only for illustrative
purposes and is not meant to represent the very high dimensional

simulations actually used.

Caption, Figure 3

The Widrow-Hoff procedure learns the error vector. The error
vectors early in learning with a small learning constant point toward

examples, and the average of the error vectors will point toward the
category mean, i.e. all the examples of a single emitter.

Caption, Figure 4

Assume an eigenvector is close to a category mean, as will be the

result after extensive error correcting, autoassociatlve learning.

The error terms from many learned examples, with a small learning
constant, will average to zero and the system attractor structure will
not change markedly. (There are very long term 'senility' mechanisms

with continued learning, but they are not of practical importance for
this application.)

126

©

©

Z

i

I

<
0 <

127

0
09

o

0

o

• ,...4

_o

g _j_

o o
Mr..)

•_ _ o_
. _o
_ --_;>

o

M _m

0
_ .,--_

--_._M
1)

N

128

c_

0

0

0 0

c_

_ ,_ I _
c_

0

""_ _
I_ • ,---q

0
• r,,,l

o
0 _ °
,.-1

_2

129

130

Figures, Anderson, Gately, Penz and Collins

Figure 5

Radar Pulse Fields: Coding of Input Information

Position of the bar of '-' codes an analog quanltity

Azimuth Elevation Frequency Pulse Width Pseudo-spectra
I< >I< >I< >I< >I< >I

OoJ|N||ooIoeN|||OI.OOOOIOO||N|OOOeOOOtOOIooNNNoe|o|O|ON.|.II

In any field: A move to the left decreases the quantity

A move to the right increases the quantity

Caption, Figure 5

Input representation of analog input data uses bar codes. The

state vector is partitioned into fields, corresponding to azimuth,

elevation, frequency, pulse width, and a field corresponding to
additional information that might become available with advances in
receiver technology.

131

Figures, Anderson, Gately, Penz and Collins

Figure 6

Emitter
Number

Clustering by Frequency Information Only

Final Output State

Azimuth Elevation Frequency Pulse Width Pseudo-Spectra
I< >I< >I< >I< >I< >I

1
2

3
4

5
6

7
8

9

i0_

Caption, Figure 6

Final attractor states when only frequency information is

learned. Ten different emitter are present, but only two different
output states are found.

132

Figures, Anderson, Gately, Penz and Collins

Figure 7

Clustering Using Azimuth, Elevation and Frequency Information

Emitter

Number
Final Output State

Azimuth Elevation Frequency Pulse Width Pseudo-spectra
I< >I< "->I< >I< >I< >I

6

7
8

9

i0

Caption, Figure 7

When azimuth, elevation and frequency are provided for

point, performance is better. However, two emitters
together, and three others have very close final states•

each data

are lumped

133

Figures, Anderson, Gately, Penz and Collins

Figure 8

a)

b)

c)

eoeew,Iitt_.

w._lleBol.l..

Monochromatic pulse.

Subpulses with distinct frequencies.

(Or some kinds of FM or phase modulation)

Continuous frequency sweep during the puls

i.e. pulse compression)

Caption, Figure 8

Suppose we can assume that advances in receiver technology will

allow us to incorporate a crude 'cartoon' of the spectrum of an

individual pulse into the coding of the state vector representing an

example. The spectral information can be included in the state vector

in only slightly processed form.

134

Figures, Anderson, Gately, Penz and Collins

Figure 9

Spectrum, Azimuth, Elevation, Frequency

Emitter Final Output State

Number

Azimuth Elevation Frequency
I< >I< >I<---

Pulse Width Pseudo-spectra
>I< >I< >I

1

2
3

4
5

6
7

8

9
i0

Caption, Figure 9

Including
considerably.

well separated•

pseudo-spectral information
Only two emitters are lumped and

helped performance
the other emitters are

135

Figures, Anderson, Gately, Penz and Collins

Figure i0

Pulse Width, Azimuth, Elevation and Frequency

Emitter Final Output State
Number

Azimuth Elevation Frequency
I< >I< >I<

Pulse Width Pseudo-spectra
>I< >I< >I

1

2
3

4
5

6
7

Emitter

8
8

9

i0

Caption, Figure I0

Suppose we add pulse width information to our other information.
Pulse width data is of poor quality because when two pulses occur
close together, a very long pulse width is measured by the receiver

circuitry. This gives rise to a bimodal distribution of pulsewidths,

and the system splits one category.

136

Figures, Anderson, Gately, Penz and Collins

Figure ii

Clustering With All Information

Emitter Final Output State
Number

Azimuth Elevation Frequency Pulse Width Pseudo-spectra
I< >I< >I< >I< >I< >I

1

2
3

4
5

6
7

8
9

10

• Rmn|o•g••e.B_N|oo_._ m .ooemvwvwgwlw|o||BouuoloBm|BRiU.oeo

•ee•mlm_ee•e•oelJN_•eee•••.e.•,•illloeeeelileeeelelom•i•ieee

• •eeeeeenUlnoooeeeeJml_eeeeeeeeeeeeennieeeeeeeooJeeeeooo

in_neeeeoeJnn_o•eee.oeooeeeuem.eui_ileeellleeeooeimEUlUmQeee

e• _l_ ••ee• Jlnne•.eo• mnl •eleeeeeeemeilieeeee el•Hem, ee•

ooqooSS|teoooeo|n|_•eooen|XUooeeeoeoeoeoo|||ooooooootooooooo

_i_n euuee_iN_•••o• •o_N_eeooe• oeeoeoo•oooeoeeoeeilnlo•_l

oe _ oo0 t_n • •Do• _N eooooooeoeoe n_ eeeoeooelooooooo

Caption, Figure ii

When all available information is used, ten stable, well

separated attractors are formed• This shows that such a network
computation can make good use of additional information•

137

Figures, Anderson, Gately, Penz and Collins

Figure 12

Learn normal set, Test normal set

Name Frequency P W PRI

I........ >I >I >I >

1 SAM Target+++ ++
2 Airborn In +++

3 AA FC +++ ++

4 Airborn In +++ ++

5 Airborn In +++ ++

6 Airborn In +++

7 SAM Target +++

8 SAM Target +++

9 SAM Target +++

10 SAM Target +++ ++

++

++ ++

++

++

++

++ ++

++ ++

++ ++

++

++

++

Caption, Figure 12

We can attach identification labels

representations of their analog parameters.
here are random and were chosen arbitrarily.

to emitters along with

The names and values used

138

Figures, Anderson, Gately, Penz and Collins

Figure 13

1

2

3

4

5

6

7

8

9

i0

Learn Normal Set, Test Set with Shifted Parameters

Name

I-

Frequency P W PRI

>I >I >I >

SAM Target+++

Airborn In +++

Airborn In +++

SAM Target
Airborn In

Airborn in

Airborn In

SAM Target

SAM Target

SAM Target

+ ++

++

+ +

+++ + ++

+++ ++

+++ + ++

+++ ++

+++ +++

++ ++

+++ ++

x error

Caption, Figure 13

Even if the emitter parameters shift slightly, it is still

possible to make some tentative emitter identifications. Three errors
of identification were made. Neural networks are able to generalize

to some degree, if the representations are chosen properly. The names

and values used here are random and were chosen arbitrarily.

139

Figures, Anderson, Gately, Penz and Collins

Figure 14

Sample Data Obtained from Jane's Weapon Systems

Three Radars from Jane's:

China, JY-9, Search

Frequency : 2.0 - 3.0 gHz
Pulse Width : 20 microseconds

PRF : 0.850 kHz

PRF Variance: Constant frequency

sweden, UARI021, Surveillance

Frequency : 8.6 - 9.5 gHz
Pulse Width : 1.5 microseconds

PRF : 4.8 - 8.1 kHz

PRF Variance: 3 frequency staggered

USA, APQII3, FireControl

Frequency : 16 - 16.4 gHz
Pulse Width : i.i microseconds

PRF : 0.674 kHz

PRF Variance: None (Constant frequency)

Caption, Figure 14

Sample data on radar

Systems. (Blake, 1988).

transmitters taken from Jane's Weapon

140

Figures, Anderson, Gately, Penz and Collins

Figure 15

Coding into Partitioned State Vector:

Symbolic Fields: Continuous Fields:

Field 1 Country Field 4 Frequency

Field 2 Designation Field 5 Pulse Width

Field 3 Purpose Field 6 PRF
Field 7 PRF Variation

1 2 3 4 5 6 7

I---> I---> I---> I >I >I >I--->

ChinaRY-9 Searc...--. -.- -,...

SwedeUARl0Surve --. - - "-..-

USA..APQIIFireC - - -.- -

Analog Bar Code Ranges:

Frequency: 0 - 14 gHz
Pulse Width: 0 - i0 microseconds

PRF: 0 - 4 kHz

PRF Variance: 0 - 200% of average PRF

Caption, Figure 15

Bar code representation of Jane's data. Note the presence of

both symbolic information such as country name and transmitter

designation, and analog, bar coded information such as frequency,

pulse width, etc.

141

Figures, Anderson, Gately, Penz and Collins

Figure 16

X

X

X

Data Retrieval: Data from Jane's Weapons Systems

only part of the data

Final output states: 3 errors in reconstructed country

1 2 3 4 5 6 7

I--->I--->I--->I--- >I >I >I--->

ChinaRY-9 Searc...--. -.- -

USA..FPS24Searc-. - -

China571..Surve.--. - - -

China581..Warni.- - - -

China311-AFireC ---. - --....

FrancTRS20Surve - - - -

IndiaPSM-3Searc...---. - - "

EnglaAS3- FireC..- - -

EnglaMARECMarin eeeeeO_uu_oeoeooeeooo_o_oe_eQ_ou_meeeeo_ooeo

_oo

USA.. FPS24Searc-. - -

USA..PAR 0Appro -.
IsraeELM_2Marin.[[_[[[_[_[[[[[.[. .-[[[[[[[[[[[_[[[[[[_[[

USA.. PR20Appro - - --...

USA..TPS43FireC...- - -

USA..APQIIFireC -...- -.--

USA..APSI2Surve - - ---..--...

IsraeELM22Marin...- - ---...--...

IsraeELM20FireC.- -- "
ee • _eeeeeeeoeeeeeeeeeue _mu,... .*Qe

SwedeGirafSearc .sm.. ----- ------eeo. eoeeeleeoeo-oelegeuo_ _B_ oo uu

SwedeUARl0Surve -- - - --.--

USSR.BarloSearc --. --. - -

IsraeELM20FireC- --. -

USSR.FireCFireC...- -- -...-

USSR.HenSeWarni..- -----------....

USSR.KnifeWarni-., ---------...--...

USSR.JayBiAirbo - -- -

Caption, Figure 16

When only analog data is provided at the input, the network will

fill in the most appropriate country name. In this trial simulation,
a network learned 47 different transmitters and was able to correctly

retrieve the associated country in 43 of them.

142

SELF-ORGANIZATION AND CLUSTERING

 91- 1783
ALGORITHMS

James C. Bezdek
Div. of Computer Science
University of West Florida

Pensacola, Florida 32514

This research was partially supported by NSF Grant # IRI-9003252

ABSTRACT

Kohonen's "feature maps" approach to clustering is often likened to the k or c-means clustering algorithms. In

this note we identify some similarities and differences between the hard and fuzzy c-Means (HCM/FCM) or

ISODATA algorithms and Kohonen's "self-organizing" (KSO) approach. We conclude that some differences

are significant, but at the same time there may be some important unknown relationship(s) between the two

methodologies. We propose several avenues of research which, if successfully resolved, would strengthen

both the HCM/FCM and Kohonen clustering models. We do not, in this note, address aspects of the KSO

method related to assodative memory and to the feature map display technique.

1. INTRODUCTION

Treatments of many classical approaches to clustering appear in Kohonen [1], Bezdek [2], and Duda and Hart

[3]. Kohonen's work has become particularly timely in recent years because of the widespread resurgence of

interest in Artificial Neural Network (ANN) structures. ANNs and pattern recognition are discussed by Pao [4]

and Uppman [5]. Our interest lies with the KSO algorithm as it relates to the solution of clustering and

classification problems and the HCM/FCM models.

2. CLUSTERING ALGORITHMS AND CLASSIFIER DESIGN

Let (c) be an integer, 1< c < n and let X = {x I , x 2 Xn} denote a set of (n) feature vectors in :Rs. X is

numerical object data; the j-th object (some physical entity such as a medical patient, seismic record etco)has

vector xj as it's numerical representation; Xjk is the k-th characteristic (or feature) associated with object j. Given

X, we say that (c) fuzzy subsets {ui:X,,_ [0,1]} are a fuzzy C-partitionof x in case the (cn) values {Uik= ui(xk), 1 _;

k < n, 1 < i < c} satisfy three conditions:

0 _<Uik< 1 for all i,k (la)

143

_;Uik = 1 for all k ; (lb)

0 < _;Uik < nfor all i (lc)

Each set of (cn) values satisfying conditions (1) can be arrayed as a (cxn) matrix U = [Uik].The set of all such

matrices are the non-degenerate fuzzy c-partitionsof X:

Mfcn = {U in R.cn I Uiksatisfies (1) for all i and k}. (2)

And in case all the Uik'Sare either 0 or 1, we have the subset of hard (or cfisp) c-partitionsof X:

Mcn = {U in Mfcn I Uik= 0 or I foralli and k}. (3)

The reason these matrices are called partitions follows from the interpretation of Uik as the membership of xk in

=the i-th partitioning subset (cluster) of X. Mfcn is more realistic as a physical model than Mcn, for it is common

experience that the boundaries between many classes of real objects are in fact very badly delineated (i.e.,

really fuzzy). The important point is that all clustering algorithms generate solutions to the clustering problem

for X which are matrices in Mfcn. The clustering problem forX, is, quite simply, the identificationof an "optimal"

partition U of X in Mfcn; that is, one that groups together object data vectors (and hence the objects they

represent) which share some well defined (mathematical) similarity. It is our hope and implicit belief, of course,

that an optimal mathematical grouping is in some sense an accurate portrayal of natural groupings in the

physical process from whence the object data are derived. The number of clusters (c) must be known, or

becomes an integral part of the problem.

3. THE ISODATA AND KSO ALGORITHMS

The most well known objective function for clustering is the least total squared error function:

Jl(U'v ; X) = T._Uik(llXk-Villi)2 , (4)

where v = (v I , v2 Vc) is a vector of (unknown) cluster centers (weights or prototypes), v i E :R.s for I _;i _<C,

U E Mcn is an unknown hard c-partition of X, and It.III is the Euclidean norm on R.s. Optimal partitions U* of X

are taken from pairs (U*, v*) that are "local minimizers" of Jl" It is important to recognize the geornetdc impact

that the use of a norm function in J1 as the criterion of (dis)similarity has on "good clusters _ (here I1.11[,but

more generally, any norm on R.s induced by a positive definite weight matrix A, as described below). Figure 1

illustrates this graphically; partitions that optimize J1 will, generally speaking, contain clusters that conform to

144

thetopologythatis inducedon_s by the eigenstructure of the norm-inducing matrix A. When A = I, good

clusters will be hypersphedcal, as the one in the left portion of Figure 1; otherwise, they will be hyperelliptical,

as the one on the right side of Figure 1.

Figure 1. Geometry of Cluster Formation In Norm-Driven Clustering Algorithms

As is evident in Figure 1, clusters that optimize J1 are formed on the basis of two properties: location and

shape. Location information is contained in the lengths of the data vectors and *cluster centers" or prototypes

{vi} from the origin, whilst shape information is embedded in the topology induced by the norm in use.

Roughly speaking, these correspond to the mean and variance of probability distributions, so (4) is in some

sense analogous to regarding the data as being drawn from a mixture of probability density functions (indeed,

there are special cases when (4) yields identical results to the maximum likelihood estimators of the parameters

of a mixture of normal distributions). Although the norm shown in (4) is the Euclidean norm, generalizations of

J1 have used all five of the usual norms encountered in numerical analysis and pattern recognition - viz, the

Euclidean, Diagonal and Mahalonobis inner product A-norms; and the p = 1 and p - =_(city block and sup)

Minkowski norms. The defining equations and unit ball shapes for these two families of norms are shown in

Figure 2.

As an explicit means for finding optimal partitions of object data, J1 was popularized as part of the ISODATA

('lterative Self-Organizing Data Analysis') algorithm (c-Means + Heuristics) by Ball and Hall [6] in 1967. It is

interesting to note that Kohonen apparently first used the term "serf-organizing" to describe his approach

145

about 15 years later [1]. Apparently, the feature of both algorithms that suggests this phrase is their ability to

iteratively adjust the weight vectors or prototypes that subsequently represent the data in an orderly and

improving manner as the algorithms proceed with iteration. We contend that this use of the term "self-

organizing" in the current context of neural network research is somewhat misleading (in both cases). Indeed,

if the aspect of FCM/HCM and KSO that entitles us to call them self-organizing is their ability to adjust their

parameters during "training", then every iterative method that produces approximations from data is self-

organizing (e.g., Newton's methodl). On the other hand, if this term serves to indicate that the algorithms in

question can find meaningful labels for objects, without extemal interference (labelled) training examples),

then all clustering algorithms are "self-organizing". Since the terminology in both cases is well established, the

only expectation this writer has about the efficacy of these remarks is that they caution readers take the

semantics associated with much of the current Neural Network literature with a large grain of salt.

Figure 2. Geometry of Level Sets for Inner product A-norms and Minkowski p-norrns

Unit Ball Shapes in the A - norms

= =)2 1}CA {X : <x,x>A= xT Ax (llxll A =

i

III Xk'V i IIA = ((Xk" vi)TA(x k" vi))("=)l
EV's of pos-definite (A) Induce shapes

Inner product : Hilbert Space Structure

Differentlable in All Variables

Unit Ball Shapes in the p - norms

Lp = {x : Ilxllp = 1}

= p=l

I IlXk-Vill p = (I: IXkj -_j Ip)(1/P) I

II x k- vi Ii I = (z IXkj - vtj l)

II xk- vi II = (max (Ix kj "vij I})o. j

p = 2 : Hilbert ; p _ 2: Banach Spaces

146

Dunn[7] first generalizedJ1 by allowingUto befuzzy(m=2below)andthenormto beanarbitraryInner

productA-norm.Bezdek[8]generalizedDunn'sfunctionalto thefuzzy ISODATA family written as:

Jm(U,v;X) = IZuikm(llXk-VillA)2 , (s)

where m e [1, oo)is a weighting exponent on each fuzzy membership; U E Mfcn IS a fuzzy c-partition of X; v =

(v1 , v2 Vc) are cluster centers in R s ; A = is any positive definite (s x s) matrix; and (llXk-VillA)2 - (Xk-vi)TA

(Xk-Vi) is the OG distance (inthe A norm) from xk to vi .

In 1979, Gustafson and Kessel [8] derived necessary conditions to minimize an extension of (5) with (c)

different norm inducing matrices. In 1981 Bezdek et. al. [9] generalized (5) by allowing the prototypes to be

(convex combinations of) linear manifolds of arbitrary and different dimensions. In 1985 Pedrycz [10]

introduced a way to use partially labeled data with (5) that amounts to a mixed supervised-unsupervised

clustering scheme. In 1989 Dave [11] introduced a generalization of (5) that uses hyperspherical prototypes

for v. In 1990 Bobrowski and Bezdek [12] used the city block and sup norms with (5), thus extending the c-

Means algorithms to the most important Minkowski norms (p = 1 and p = =o).

Necessary conditions that define iterative algorithms for (approximately) minimizing Jm and its generalizations

are known. Our interest lies with the cases represented by (4) and (5). The conditions that are necessary for

minima of J1 and Jm follow"

Hi_rd c-Means (HCM) Theorem r21. (u, v) may minimize _]; Uik(llxk- viii A)2 only if

Uik = 1; (llXk-VillA)2=minj{(llXk-VillA)2}; and=0; otherwise r(6a)

vi . 1_UikXk/ _Uik (6b)

Note that HCM produces hard clusters U e Mcn. The HCM conditions are necessary for "minima'of (4) (i.e.,

with A=I, the Euclidean norm on R.s), and, as we shall note, are also used to derive hard clusters in the KSO

algorithm. The well known generalization of the HCM conditions is contained in the:

Fuzz_v c-Means (FCM_ Theorem [21. (U,v) may minimize T__uikm(llXk - viii A)2 for m > 1 only if •

k = (:(llXk'VdlA /llXk'vjllA)2/(m'1))'1 (Ta)

147

vi = :_(Uik)mXk / T_,(Uik)m (7b)

The FCM conditions are necessary for minima of (5). There is an altemative equation for (7a) if one or more of

the denominators in (7a) is zero. These equations converge to the HCM equations as m--*l from above, and

for (m > 1), the U in FCM is truly fuzzy, i.e., U e (Mlcn- Mcn). The FCM algorithms are simple Picard iteration

through the paired variables U and v. Because we want to compare this method to the KSO algorithm, we give

a brief description of the FCM/HCM algorithms.

(Parat[el_ c-Means (FCM/HCMt Alaorlthms

<FCM/HCM 1> : Given unlabeled data set X = {x 1, x2 Xn}. Fix : 1 < c < n; 1 < m < o. (m=l for HCM);

positive definite weight matrix A to induce an inner product norm on :R,s ; and ¢, a small positive constant.

<FCM/HCM 2>: Guess v0 = (v 1,0' v2,0' "'" Vc,0) E IiLcs (or, initialize U0 _ Mfcn).

<FCM/HCM 3>: For j = 1 to J:

<3a>: Calculate Uj with{vi,j_1 } ;

<3b>: Update {vi,j.1) to {vi,j} with Uj ;

<3c>: If max i (Ilvi,j-1 to vi,j Ii } < =, then stop and put (U*,v*) = (Uj,vj); Else : Next j

This procedure is known to converge q-linearly from any initialization to a local minimum or saddle point (U*,v °)

of Jm" Note again that the update rule for the weights {vi} at step <3b> is a necessary condition for minimizing

Jm" Moreover, all (c) weight vectors are updated using all (n) data points simultaneously at each pass; i.e., the

weights (vi} are not sequentially updated as each xk is processed. This is why we call the above description a

"parallel" version of c-means, as opposed to the well known sequential version.

There is a sequential version of hard c-means (SHCM) that can be used to minimize Jl' and readers should be

aware that it may produce quite different results than HCM on the same data set. One iteration of the SHCM

algorithm is as follows: beginning with some hard U, the centers {vi} are calculated with (6b). Once the

prototypes are known, one returns to update U. Beginning with xI , each point is examined, and moved from,

148

say, cluster i to cluster j, so as to maximize the decrease in J1 (if possible). Then the two affected centers (vi ,

vj} and rows i and j of U are updated using equations (6). One complete pass of SHCM consists of testing

each of the n data points in X, and effecting a transfer at each point where a decrease in J1 can be realized.

SHCM terminates when a complete pass can be made without transfers. We mention this version of HCM

because it is SHCM that most closely resembles the KSO algorithm. Figure 3 is a rough depiction of how the

HCM method might begin; Figure 4 indicates a desirable situation at termination. In Figure 3 the initial hard

clusters subdivide the data badly, and the overall mean squared error (the sum of squares of the solid line

distances between data points and prototypes) is large; at termination, the prototypes lie "centered" in their

clusters, the overall sum of squared errors is low, and the hard 2-partition subdivides the data "correctly" (this

is what happens if we are lucky !).

Figure 3. An Initial 2-Partition and Prototypes for HCM

V

149

Figure 4. A (Benevolent)Final Configuration of 2-Partition and Prototypes for HCM

Kohonen'smethoddiffersfromthec-meansapproachinseveralimportantways.First,it is notanorm-driven

scheme.Instead,theKSOmethodusesthegeometricnotionof orientation matching, depicted in Figure 5,

as the basic measure of similarity between data points and cluster centers. Second, there is no partition U

involved in the KSO algorithm. Instead, an initial set of cluster centers are iteratively updated without reference

to partitions of the unlabeled data. The underlying geometry of the criterion of similarity is shown in Figure 5.

The measure of similarity, as shown in Figure 5, is the angle between a data point x and prototype v (in the

neural network community, the vectors {vi} are often called "weight" vectors; each one being attached or

identified with a "node" in the network). Information that the data set may contain about cluster shapes in

feature space is lost (i.e., not used by cos(O)); and if the data are normalized at each step to be vectors of

length 1, as they usually are in the KSO approach, location information is lost as well. Consequently, the

geometry favored by the KSO criterion of similarity is data substructures that lie in angular cones emanating

from the origin. We emphasize that in real data, either type of criterion - the c-means type norm driven

measure, or the KSO angular measure - may or may not be appropriate for matching the data. As with all

clustering problems, the question is not - which is better?, the question is, which is better for this data set? In

order to effect comparison with the c-means model, a brief description of Kohonen's algorithm follows.

150

Figure 5. Geometryof Cluster Formation in Orientation Matching Clustering Algorithms

\

_ COS(0) _ _ XllV _ _ 1 D IlXmVll2 / 2 I

K0honen's (KSO) Clusterlnq Alqorlthm

<KSOI> • Given unlabeled, "ordered" data set X = {x 1, x2..... Xn}. Fix • 1 < c'; Choose update scale factors

{u.j}so that { =.j } -_ 0; ,_x.j= oo,T_.(oLj)2 < _ ; Choose update neighborhood "radii"{ pj } _ {0,1,2 c*}:

<KSO2> Guess (unit vectors) v0 = (v1,0 ' v2,0 Vc*,0) E _ c°s

<KSO3 > For j = 1 to J: •For k = 1 to n:

<3a>" Find i*(k) st (llxk-vi.(k)lli)2 = rain{ (llxk-Vj(k)lli)2

151

<31:)>:ForindicesN*(k)= i*(k), i*(k) _+1, ... i*(k) :!:pj Update vt,j. 1 •

vt,j = vt,j_1 + ¢_j(Xk-vt)/11vt,j_1 + u.j (xk- vt) IIz;otherwise, vt,j = vt,j_1 . (8)

Next k; Next j

We have used c* instead of c in this procedure to emphasize the fact that Kohonen's method often uses

"multiple" prototypes, in the sense that even though (unbeknownst to us !) X contains only c clusters, it may

be advantageous to look for c* > c cluster centers; this is a further difference between the c-means and KSO

strategies. This is one form of Kohonen's approach; other update rules have been used. The geometry of the

update rule for the weight vectors in (8) is depicted in Figure 6. Thus, if we are at point xk, as shown in Figure

6, <3a> of the KSO algorithm simply finds the current prototype (Void) closest to xk in angle (minimizing the

angle is equivalent to the formula in <3a>). If the current center is called Vold = vi,(k) as in Figure 6, then

update equation (8} connecls Void = vi.(k) to the vector xk , rotates Vold to the new position Vnew , and

finally normalizes Vnew.

The KSO procedure is exactly like SHCM in that it updates (some subset of the) prototypes sequentially after

the examination of each data point. Figure 7 indicates the geometry of the scheme specified in <3b>; the

basic idea is that once the prototype Vold closest to the current data point is found, all prototypes in a

neighborhood of the "winner" are also updated.

Figure 6. The Geometry of Kohonen's Updating Rule

(1) min (e)

Xk

(2) Rotate

void _ vnew

Vnew

Void

152

Figure 7. KSO Updating of Prototypes in the Neighborhood N*(k) of "Winner" Vl,(k)

Feature Web in R s

Although the "feature web" shown in Figure 7 is conceptualized here as being in R s, it has actually been

displayed only the case s = 2. Kohonen has shown that this process converges, in the sense that the {vt,j}-_

{vt*} as {_j }-_0, in the special case s=2. Moreover, the limiting{vt*} preserve a "topological ordering" property

of the data set X on an array of output nodes associated to the weight vectors. Iteration in the KSO method

thus trains the weight vectors {vt*} so that they preserve "order" in the output nodes. As previously noted,

the KSO method does not use or generate a partition U of the data during training. However, once the weight

vectors stabilize, the KSO model produces a hard U by following the nearest prototype rule below,

More specifically, once a set of prototypes {vi} are found by "training" on some data set X (this includes all four

methods described above, HCM, FCM SHCM and KSO), they can be used to label any unlabeled data set.

For any vector x E R.s, the HCM equation for Uik defines a (piecewise linear) nearest prototype classifier:

The Nearest Prototype Classifier Decision Rule

partition of (any) data X with HCM equation (6a):

: Given {vi} ' Compute, non-iteratively, the hard c-

153

Uik=

=)2}1; ((llxk-vill]))2 rrtnj{(llXk-villI

O; otherwise

(9)

Note that we have written (9) with the Euclidean norm. Theorem 2 suggests that any scalar product induced

A-norm might be used in the formula; however, interpretation of the subsequent decision rule as discussed

above becomes very difficult.Thus, while it makes sense geometrically to consider variations in the norm as in

(7) while searching for the cluster centers, it is much less clear that norms other than the Euclidean norm

should be used during classification. Figure 8 is a rough depiction of how the KSO method might begin;

Figure 9 shows the situation after termination of KSO, followed by a posteriori application of (9) to find an

"optimal" hard c-partition U corresponding to the final weights. A question about how rule (9) is used with the

KSO prototypes remains: how do we, without labeled data, assign one of c < c° "real" labels to subsets of the

c* weight vectors found by the KSO scheme? The same question applies to FCM - we still need to decide

which of the c "real" labels belongs to each prototype - the problem is just more pronounced when there are

multiple prototypes for each class.

Figure 8. Initial Configuration of Weight Vectors in the KSO Scheme

154

Figure 9. Terminal Weight Vectors and an HCM ParUtlon In the KSO Scheme

o O

4. DISCUSSION AND CONCLUSIONS

First, we itemize the major differences between ISODATA and KSO :

(D1) FCM, HCM and SHCM are intrinsicclustedng methods - i.e., one of their inputs is an unknown partition,

and one of their outputs is a partition of unlabeled data set X which is optimal in the sense of minimizing a

norm driven objective function. The KSO method, on the other hand, needs an a posteriori rule such as

the nearest prototype rule at (9) to generate a partition of the data non-iteratively. We might call this an

extrinsic clustering scheme. Moreover, without labeled data that can be used to discover which subsets

of the c* multiple prototypes found by the KSO scheme should be identified with each of the c classes

assumed in (9), there is no general way to even Implement (9) with the KSO rule. Thus, much must be

added to KSO to make it a true clustering method.

(D2) The data set X is used differently. KSO uses the data sequentially (locally) and hence, its outputs are

dependent on local geometry and order of labels, whereas ISODATA utilizes the data globally, and

155

updates both the weights and partition values in parallel at each pass. In this sense KSO is most akin to

Sequential Hard c-Means, which is also sensitive to ordering of labels - this is often regarded as a fatal flaw

in clustering.

(D3) KSO can have multiple prototypes for each class; ISODATA has but one. In clustering, the usual

assumption is that c is unknown, and one resorts to various cluster validity schemes to validate the results

of any algorithm. Since the KSO scheme uses many prototypes, without assuming an underlying "true

but unknown" number of clusters, this is advantageous to the user. However, the dilemma of how to

convert the prototypes into clusters, as discussed in (D1), persists.

(D4) KSO uses local orientation (cos 0 = <x,v>) on the unit ball as the measure of similarity between data and

weights, whereas ISODATA uses cluster _ (via the eigenstructure of A) and _ (via the lengths

of the weights and the data) to assess (dis)similarity between the data and prototypes. Thus, the c-Means

approach has a much more "statistical" flavor than KSO. On the other hand, KSO uses the dot product at

each node, in the spirit of the McCulloch-Pitts neuron. Thus, local computations in the KSO scheme

proceed on the basis assumed by many workers in neural network research, and make the KSO scheme

more easily identifiable with this type of computational architecture.

(D5) KSO preserves "order" in a certain sense; ISODATA does not. This property of the KSO method is

perhap9 its most interesting distinction. There is little hope that c-Means has a similar property. Since

cognitive science assures us that one aspect of intelligence is its inherent ability to order, this aspect of

the KSO approach again shows well in its favor. A significant line of research concerns whether or not the

FCM/HCM models possess this, or any similar property.

(D6) Weight updates in the KSO method are intuitively appealing; weight updates in ISODATA are

mathematically necessary. Since the update formula in c-Means finds either real or generalized centroids,

we might claim that this scheme is also intuitively appealing. In this regard the c-Means algorithms

(including SHCM) have a clear theoretical advantage, at least in terms of justification of the procedure

used.

(D7) FCM, HCM and SHCM are all well-defined optimization problems; KSO is an heuristic procedure. An

interesting question about KSO is this: what function is being optimized during iteration? An answer to

this question would be both useful and illuminating. The criterion functions that drive FCM, HCM and

SHCM are well understood geometrically and statistically; discovery of a criterion function for Kohonen's

algorithm might supply a great deal of insight about other properties of the algorithm and its outputs.

156

(D8)KSOpartitionshavesofar beengeneratedwiththe nearestprototyperuleandthe Euclideannorm,

whereasFCM,HCMandSHCMcan be used with any inner product and two Minkowski norms. Much

research can be done on the issue of how best to use the Kohonen prototypes to find cluster

substructure. There are many natural ways besides the nearest prototype rule to use KSO outputs with

the weights {vi}. For example, one could simply distribute unit memberships satisfying (lb) across the

KSO nodes at each step using distance proportions. This generalizes Kohonen's model from a

"neighborhood take all" to a "neighborhood share all" concept. One certainly suspects that it is possible

to incorporate U _ Mfcn as an unknown in the KSO approach, so that an extended KSO algorithm

creates partitions of the data that are necessary, rather than, as in the current use of the HCM labeling

rule, a heuristic afterthought.

Major similarities between ISODATA and KSO include:

(Sl) If we let (U F, VF), (U H, VH), (US, Vs), and (U K, VK) denote, respectively, the pairs found by FCM, HCM,

SHCM and KSO, we note that (U F, VF) is a critical point for Jm' while (UH, VH), (Us, Vs), and (UK, VK)

are, because of the HCM theorem, (possibly different) critical pointsof Jl" However, (U H, VH) _ (US, Vs)

(U K, VK) generally. This suggests that (i) HCM (and especially SHCM) and KSO as described herein are

most definitely related, and (ii), there should be a generalized (fuzzy) KSO that bears the same

relationship to FCM that the hard c-Means versions bear to the current version of KSO. It seems clear

that there is a stronger mathematical link between FCM/HCM and KSO than is currently known.

Connection of the two approaches begins with careful formulation of a constrained optimization problem

that holds for KSO. This involves finding a global KSO criterion function and necessary conditions that

require the calculation of the weight vectors {vi} as in KSO <3b>.

($2) Both algorithms find prototypes (weights or cluster centers) in the data that provide a compressed

representation of it, and enable nearest prototype classifier design. Recent work by Huntsberger and

Ajjimarangsee [13] indicates that FCM is at least as good as KSO in terms of minimizing apparent error

rates. And further, FCM sometimes generates identical solutions to KSO on various well known data

sets. This is another powerful indicator of the underlying (unknown) relationship between the KSO and

c-Means methods. Much can be done empirically to confirm or deny specific relationships between the

two methods.

We have itemized some similarities and differences between two approaches to the clustering of unlabeled

data - Hard/Fuzzy c-Means and Kohonen's self-organizing feature maps (KSO), and posed some questions

concerning each method. Successful resolution of these questions will benefit both models. Numedcal

convergence properties and the neural-like behavior of both the extended KSO and FCM algodthms should

157

be established. Issues to be studied should include : robustness, adaptivity, parallelism, apparent error rates,

time and space complexity, type and rate of convergence, optimality tests, and initialization sensitivity.

5. REFERENCES

[1]

[2]

[3]

[4]

Is]

[6]

[7]

[8]

[9]

[i0]

[11]

[13]

Kohonen, T. Serf-Organizati0n and Associative Memory_,3rd Edition, Springer-Verlag, Berlin, 1989.

Bezdek, J. Pattern Recognition with Fuzzy Obiective Function AIg0dthms, Plenum, New York, 1981.

Duda, R. and Hart, P. Pattern Classification and Scene Analysis. Wiley, New York, 1973.

Pao, Y.H. Adaptive Pattern Recognition and Neural Networks, Addison-Wesley, Reading, 1989.

Lippman, R. An Introduction to Neural Computing, IEEE ASSP Magazine, April, 1987, 4-22.

Ball, G. and Hall, D. A Technique for Summarizing Multivariate Data, Behav. Sci., 12, 1967, 153-155.

Dunn, J.C. A Fuzzy Relative of the ISODATA Process, Jo. Cybernetics, 3, 1974, 32-57.

Gustafson, D. and Kessel, W. Fuzzy Clustering with a Fuzzy Covariance Matrix, in P_,
1978, 761-766.

Bezdek, J. C., Coray, C., Gunderson, R. and Watson, J. Detection and Characterization of Cluster
Substructure, I and II, SIAM Jo. of Appl. Math., 40(2), 1981,339-372.

Pedrycz, W. Algorithms of Fuzzy Clustering with Partial Supervision, Patt. Recog. Letters, 3, 1985,
13-20.

Dave, R. Fuzzy Shell Clustering and Applications to Circle Detection in Digital Images, in press, Int'i.
Jo. of Genera/Systems, 1989.

Bobrowski, L. and Bezdek, J. c-Means Clustering with the I;1 and I;o_Norms, in review, IEEE Trans.
SMC, 1990.

Huntsberger, T. and Ajjimarangsee, P. Parallel Self-Organizing Feature Maps for Unsupervised
Pattern Recognition, in press, Int'/. Jo. Genera/Systems, 1990.

158

 01"21784

Single Board System for Fuzzy Inference

James R. Symon Hiroyuki Watanabe

Department of Computer Science

CB# 3175 Sitterson Hall

University of North Carolina

Chapel Hill, NC 27514-3175

TEL. (919) 962-1817, 962-1893

Abstract

The VLSI implementation of a fuzzy logic inference mechanism allows the use of rule-based
control and decision making in demanding real-time applications such as robot control and in the
area of command and control. We have designed a full custom VLSI inference engine. The chip is
fabricated using 1.0 # CMOS technology. The chip consists of 688,000 transistors of which 476,000
are used for RAM memory.

The fuzzy logic inference engine board system incorporates the custom designed integrated cir-
cuit into a standard VMEbus environment. The Fuzzy Logic system board uses TTL logic parts
to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane
allowing the chip to perform application process control through the VMEbus host. High level C
language functions hide details of the hardware system interface from the applications level pro-
grammer. The first version of the board was installed on a robot at Oak Ridge National Laboratory
in January of 1990.

1 Introduction

Fuzzy logic based control uses a rule-based expert system paradigm in the area of real-time process
control [4]. It has been used successfully in numerous areas including train control [12], cement kiln

control [2], robot navigation [6], and auto-focus camera [5]. In order to use this paradigm of a fuzzy
rule-based controller in demanding real-time applications, the VLSI implementation of the inference

mechanism has been an active research topic [1, 11]. Potential applications of such a VLSI inference

processor include real-time decision-making in the area of command and control [3], and control of
precision machinery.

An original prototype experimental chip designed at AT&T Bell Labs [7] was the precursor to the

fuzzy logic inference engine IC that is the heart of our hardware system. The current chip was designed

at the University of North Carolina in cooperation with engineers at the Microelectronics Center of

North Carolina (MCNC) [8]. MCNC fabricated and tested fully functional chips.
The new architecture of the inference processor has the following important improvements compared

159

to previous work:

1. programmable rule set memory

2. on-chip fuzzifying operation by table lookup

3. on-chip defuzzifying operation by centroid algorithm

4. reeonfigurable architecture

5. RAM redundancy for higher yield

The fuzzy chips are now incorporated in VMEbus circuit boards. One of the boards was designed
for NASA Ames Research Center and another board was designed for Oak -Ridge National Labora-

tory (ORNL). The latter board has been installed and is currently performing navigational tasks on

experimental autonomous robots [9].
ORNL will soon receive the second version of the board system featuring seven Fuzzy chips in a

software reconfigurable interconnection network. The network provides host and inter-chip I/O in any

logical configuration of the seven chips.

2 Fuzzy Inference

The inference mechanism implemented is based on the compositional rule of inference for approximate

reasoning proposed by Zadeh [13]. Suppose we have two rules with two fuzzy clauses in the IF-part and

one clause in the THEN-part:

Rule 1: If (x is A1) and (y is Bl) then (z is C1),

Rule 2: If (x is A2) and (y is B2) then (z is C:).

We can combine the inference of the multiple rules by assuming the rules are connected by OR
connective, that is Rule 1 OR Rule 2 [7]. Given fuzzy proposition (x is A') and (y is B'), weights a_

and aiB of clauses of premises are calculated by :

a_ = max(A', A_),
sg

aiB - n_x(B',B,), for i- 1,2.

Then, weights wl and w2 of the premises are calculated by :

wl = min(aA, af),

w2 = min(a A, c_),

Weight aa represents the closeness of proposition (x is Ai) and proposition (x is A'). Weight wi
represents similar measure for the entire premise for the i zh rule. The conclusion of each rule is

' - min(wi, CO, for i = 1,2.C i -

The overall conclusion C' is obtained by

C I l i= max(el, C2).

This inference process is shown in Figure 1, In this example, a_ t = 0.5 and a_ = 0.25, therefore

wl = 0.25. a¢ = 0.85 and a B = 0.5, therefore w2 = 0.5.

160

0 _ 0 _'_ 0 _ _.

1 1 1 0 - .
- 1

W2

0 0 _ 0

-1 0 1 -1 0 1 -I 0 1

Figure 1: Inference.

THEN-Part

w" 4

m ;_onlg

_.dw

TO E THEN.Tree

TO F THEN.'rme

Figure 2: Fuzzy Chip Datapath.

161

3 Fuzzy Chip

The fuzzy logic inference engine is a fully custom designed 1.0 micron CMOS VLSI circuit of 588,000

transistors implementing a fuzzy logic based rule system. Included on chip are a programmable rule set

memory, an optional input fuzzifying operation by table lookup, a minimax paradigm fuzzy inference
processor, and an optional output defuzzifying operation using a centroid algorithm. The standard data

path configuration is shown in Figure 2. The design has a reconfigurable architecture implementing either
50 rules with 4 inputs and 2 outputs, or 100 rules with 2 inputs and 1 output. Separately addressed

status registers allow programmed control of the fuzzy inference processing and chip configuration. All

the rules operate in parallel generating new outputs over 150,000 times per second.
The chip has 12 bidirectional data pins and 7 address pins for rule memory I/O. For process-control

I/O, each of 4 inputs and 2 outputs has 6 pins. Each of 4 inputs has a corresponding load pin. The

chip also has several control signals. Control signals RW(read high write low) and CEN (chip enable)

are similar to that of a memory chip.

4 The System Boards

4.1 Single Chip Systems

The Fuzzy Logic system boards place the Fuzzy chip into a VMEbus environment to provide application

process control through a VMEbus host. The single chip system designed for NASA Ames Research

Center uses an off-the-self VMEbus prototyping board [10]. The overall configuration of the design is
shown in Figure 3. In this design, the VMEbus interface is provided by the prototyping board system

and needed a minimum of design for integration of the fuzzy chip. The fuzzy chip interface to the board

is realized using discrete TTL parts and wire-wrapping. In the board system for ORNL, the VMEbus
interface was designed by the first author and realized using a programmable logic device (PLD) and

TTL parts. More robust printed circuit board (PCB) technology was used. The PCB architectural
concept is shown in Figure 4. The UNIX device driver interfaces of these two boards are quite similar.

The ORNL board is designed to standard VMEbus specifications for a 24 bit address, 16 bit data,
slave module as found in The VMEbus Specification, Revision C.1, 1985. It provides digital communi-

cation between the host and the Fuzzy chip. A large, UV erasable PLD generates the board control

signals. VMEbus interface is through TTL parts. One Fuzzy Inference IC processes four 6-bit inputs to

generate two 6-bit outputs. The interface with the host computer uses memory mapping to include the

Fuzzy chip's I/O addresses in the application process storage space. All of the chip's memory as well as

its inputs and outputs are accessed through addresses on the VMEbus so that the entire Fuzzy Logic
board system responds like a section of memory.

The board's address space is 1024 bytes or 512 16-bit words in length. Most of the addresses in

that space are not used by the board. The lower 128 word addresses of the board are mapped into
the fuzzy chip. One hundred addresses are for rule memory. Another six addresses are mapped to four

fuzzification tables and two status registers. The board has six addresses for I/O for the fuzzy chip, and

addresses for hardware reset and board ID. On-board dip switches and signal jumpers allow the user

to select the board base address comprised of the upper 14 bits of the 24 bit address, and the board's

user privilege response characteristic determined by the VMEbus address modifier bits. Further design

details are shown in Figure 5.

4.2 Multiple Fuzzy Chip System

The second version of the system board keeps the standard VMEbus interface of the first version but

adds significant new capabilities. Seven Fuzzy chips communicate with each other and the host through

a software reconfigurable interconnection network. Two Texas Instruments digital crossbar switch IC's

162.

VME bus
ccrtr¢l

c_t_

XYCOM 085

Non-lntelligentPrototypingModule

VME Bus Interface I Address Selection Iswitches

DiscreteTTL component

I

Figure 3: Single Chip System Based On Prototyping Board.

VMEbus control

t datai address

buffe

. _1

Jdata iI Icontr__.buffers I Jaddress buffersl_--I
- I II switches I

programmable logic device control

_ Fuzzy Logic Inf!rence Engine

Figure 4: Single Chip System Based On Custom PCB.

163

YMEbus

12!

EPIlIIO

Figure 5: Details of PCB Architecture

implement the network. Any logical configuration of the seven chips may be specified in software, e.g.

seven in parallel, 4-2-1 binary tree, etc. Any fuzzy output may be routed to any input. With the new
board more inputs may be processed and hierarchies of rule sets may be explored. We can simulate

rules with up to 16 conditions in the IF-part by using three layers of Fuzzy chips. Another application
is to load multiple rule sets for different tasks in a single board. This is done by configuring multiple

chips in parallel. The new printed circuit board architectural concept is shown in Figure 6.
This arrangement exploits an important feature of the Fuzzy chip. Normal input to the chip is by

6-bit integers which the chip fuzzifies into 64-value membership functions to be fed into the processing

pipeline. The final output membership function is defuzzified into a 6-bit output integer. However, the

chip has another mode of operation. Any input or output can bypass the [de]fuzzification process so that

I/O occurs in streaming mode. The full 64-value input or output membership function is placed on the
pins, one value per clock cycle. When an output of one chip is connected to an input of another chip (or

itself), communication can be done in streaming mode without the loss of information inherent in the

[de]fuzzification operations. On this system board, all inter-chip communication is done in streaming
mode.

The new board also has four 64-value FIFO queues which allow final output to the host to be done

in streaming mode. The application process is then free to perform its own custom operations on the

full output membership functions. The final defuzzification is no longer limited to a centroid method.

One can, also, generate the result in higher precision than 6 bits if necessary.

164

I
VME Bus Interface

4

--4

FIFO o

64x4

Digital 0

Crossbar

Switch

3!
2 i

'i
t

J____

I 4

I o

Fuzzy chip

Control

__I
dl

_,,2F
EPLD

VME Bus

Data Bus

Figure 6: Seven Chip System Architecture.

The new board will be installed at ORNL in August, 1990. In addition to navigational tasks the

system will be used to explore fuzzy logic control of manipulator arm functions.

5 Software Interface

High level C language functions can hide the operational details of the board from the applications

programmer. The programmer treats rule memories and fuzzification function memories as local program

structures passed as parameters to the C functions. Similarly, local input variables pass values to the

system and outputs return in local variable function parameters. Programmers are only required to

know the library procedures. Some procedures provided for the version 1 board are described in the

following table.

1. WriteRule(rulennm, rnledata) - The rule data structure pointed to by rnledala is written to the
board,

2. ReadRule(rulenum, ruledata) - Reads back into ruledata the rule identified by rnlenurn currently
stored in the chip.

3. WriteFuzz(fuzznum, fuzzdata) - Fuzzification table is written to the board.

4. StartFZIAC(inpA, inpB, inpC, inpD) - Four inputs are sent to the fuzzy board and inference

processing will be started.

5. ReadOut(outE, outF) - Both outputs are read from the board. Inference process will be continued.

165

6. StopFZIAC(outE, outF) - Both outputs are read from the board. Inference process will be halted.

6 Summary

We have described the architecture and associated high level software of two VME bus board systems
based on a VLSI fuzzy logic chip. In addition to operating in the robot at ORNL, the single chip

board is installed on a Sun-3 workstation at the University of North Carolina for further research and

software development. For example, it is useful to provide an X-window based user interface to this

fuzzy inference board. The complex and flexible architecture of the multiple chip board will require more

sophisticated support software to facilitate exploration of various hierarchical interconnection schemes.

7 Acknowledgements

The research reported here is supported in part by Oak Ridge National Laboratory, by MCNC Design
Initiative Program, and by NASA Ames Research Center.

References

[1] Corder, R. J., "A High-Speed Fuzzy Processor," Proc. of3nd IFSA Congress, pp. 3]'9-381, August
1989.

[2] Holmblad, L. P. and Ostergaard, J. J., "Control of a Cement Kiln by Fuzzy Logic," Fuzzy Infor-

mation and Decision Processes (eds. M. M. Gupta and E. Sanchez) pp. 389-399, 1982.

[3] Kawano, K., M. Kosaka, and S. Miyamoto, "An Algorithm Selection Method Using Fuzzy Decision-

Making Approach," Trans. Society of Instrument and Control Engineers, Vol. 20, No. 12, pp. 42-49,

1984. (in Japanese)

[4] King, P. J. and E. H. Mamdani, "The Application of Fuzzy Controi Systems to Industrial Pro-

cesses," Automatica, Vol. 13, No. 3, pp. 235-242, 1977.

[5] Maeda, Y., "Fuzzy Obstacle Avoidance Method for a Mobile Robot Based on the Degree of Danger,"

Proc. of NAFIPS'90, pp.169-172, June 1990.

[6] Shingu, T. and E. Nishimori, "Fuzzy-based Automatic Focusing System for Compact Camera,"

Proc. of 3nd IFSA Congress, pp. 436-439, August 1989.

[7] Togai, M. and H. Watanabe, "An Inference Engine for Real-time Approximate Reasoning: Toward

an Expert on a Chip," IEEE EXPERT, Vot. 1, No. 3, pp. 55-62, August 1986.

[8] Watanabe, H., W. Dettloff and E. Yount "A VLSI Fuzzy Logic Inference Engine for Real-Time

Process Control," IEEE Journal of Solid-State Circuits, Vol.25, No.2, pp.376-382, April 1990.

[9] Weisbin, C.R., G. de Saussure, J.R. Einstein, and F.G. Pin, "Autonomous Mobile Robot Navigation

and Learning," Computer, Vol.22, No.6, June 1989.

[10] XYCOM, XVME-85 Prototyping Module Preliminary Manual, 1984.

[11] Yamakawa, T. and T. Mikl, "The Current Mode Fuzzy Logic Integrated Circuits Fabricated by

the Standard CMOS Process," IEEE Transactions on Computers, Vol. C-35, No. 2, pp. 161-167,

February 1986.

166

[12] Yasunobu, S. and S. Miyamoto, "Automatic Train Operation System by Predictive Fuzzy Control,"
in Industrial Applications Of Fuzzy Control, M. Sugeno (Ed), pp. 1-18, 1985.

[13] Zadeh, L. A., "Outline of a New Approach to the Analysis of Complex Systems and Decision-
Making Approach," IEEE Transactions on Systems, Man and Cybernetics, Vol. SME-3, pp. No. 1,

pp. 28-45, January 1973.

167

LEARNING CONTROL OF INVERTED PENDULUM SYSTEM

BY NEURAL NETWOFIK DRIVEN FUZZY REASONING

- The Learning Function of NN-Driven Fuzzy Reasoning

under Changes of Reasoning Environment -

lsao HAYASHI, Hiroyoshi NOMURA and Noboru WAKAMI

Central Research Laboratories, Matsushita Electric industrial Co. Ltd.

3-15, Yagumo-nakamachi, Moriguchi, Osaka, 5"/0 Japan

Whereas conventional fuzzy reasonings are associated with tuning problems which are
lack of membership functions and inference rule designs, a neural network driven fuzzy

reasoning (NDF) capable of determining membership functions by neural network is
formulated. In the antecedent pans of the neural network driven fuzzy reasoning, the
optimum membership function is determined by a neural network, while in the consequent
parts, an amount of control for each rule is determined by another plural neural networks.
By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for
making a pendulum stand up from its lowest suspended point are determined for verifying
the usefulness of the algorithm.

1. INTRODUCTION

Extensive applications of fuzzy

reasoning for various control problems, and a

number of actual examples of fuzzy control

are reported [1] lately. However, the fuzzy

reasoning is generally involved with a

tuning problem [2], that is, the form of fuzzy

number, and the fuzzy variables of

antecedent parts and consequent parts of

fuzzy inference rules, have to be adjusted

for minimizing the difference between the

estimation of fuzzy reasoning and the

output data for given input data.

As a method to solve the tuning

problem, a neural network driven fuzzy

reasoning (NDF)[3, 4] by which inference

rules are constructed from the learning

function of neural network [5,6] is

previously reported. The NDF is a type of

fuzzy reasoning having an error back-

propagation type network [7] which represent

fuzzy sets in its antecedent parts .while

another error back - propagation type

network represents an input- output

relationship between input and output data

of consequent parts of each rule.

In this paper, an algorithm for

constructing inference rules basedon NDF is

introduced first, and an experimental
verification of its effectiveness is performed

taking an example for an inverted

pendulum system.

In this experiment, a pendulum in its

hanged tx_ition is surely swang up and is

held at an inverted position by using a

mechanism controlled by inference rules

which are constructed by determining fuzzy

sets from the observations of pendulum

operator by utilizing NDF algorithm.

The inference period required for

controlling the swing-up motion of pendulum

is approximately 15 msec. As a parameter

which governs the dynamic characteristics of

inverted pendulum system, the length of

pendulum is considered here, and changes of

control characteristics of NDF caused by this

is studied. Since the fuzzy set of antecedent

parts and input- output relationship of

consequent parts can be determined by

means of NDF without fin etuning of

inference rules by utilizing the learning

function of neural network acquired from

the input-output data, it is an advantageous

169

method to solve tuning problems of fuzzy

reasoning.

2.. ARTIFICIAL NEURAL NETWORK DRIVEN

FUZZY REASONING (NDF)

The NN- driven fuzzy reasoning

(NDF) is a fuzzy reasoning [8] using linear

functions in its consequent parts. In a NDF,

the membership functions in the antecedent

paris is determined in a multi-dimensional

space. For example, the following rules R1,

R2, and R3 of the conventional fuzzy

reasoning wherein xl and x2 are input

variables, yl. y2, and y3 are output

variables, and al0 and all are coefficients,

and FSL and FBG are fuzzy numbers

where SL and BG mean small and big

respectively, are considered.

R1 ; IF xl is FSL and x2 is FSL,

THEN yl = alO + allxll + a12x12

R2 ; IF xl is FSL and x2 is FBG,

THEN y2 = a20 + a21x21 + a22x22

R3 ; IF xl is FBG,

THEN y3 = a30 + a31x31

(D

Since tile above condition means that

xl is small and x2 is small in the

antecedent parts, the fuzzy sets F1 = FSL

I_ FSL can be constructed in a partial space

of the input as shown in Fig. 1. The same

can be applied for the fuzzy sets to be

constructed for R2 and R3 likewise. Since

tile boundary between tile each partial space

is vague, the boundary is shown by the

hatched lines. That means that the input

space consisted of xl and x2 is divided into

individual partial spaces by the number of

fuzzy rules, and the fuzzy sets of

antecedent part of each inference rules are

constructed in each partial space, while tile

NDF is determined by the fuzzy sets of

antecedent parts by utilizing the back-

propagation type network.

An explanation for the back-

propagation type network is as follows. Since

neural networks are constrained by a

general type processing unit found in the
neural system, and the processing unit in a

neural network shares some of the physical

properties of real neurons, the processing
unit is called neuron here.

Fig. 2 shows an example of

fundamental layered back propagation type

networks containing M layers, where the

first layer is called an input layer, the M-

th layers are output layers, and other layers

are called intermediate layers. Every neuron

within these layers represents respective

correlation between the multi-inputs xij and

multi-outputs yi expressed by the following

equations.

yi = f (5" O_ ij xij + 0) (2)

j=l

f(Z) = (3)
1 + exp(-Z)

where 0 is a weight showing a correlation

between neurons.

In this paper, for a given input and

output expressed by x = (xl, x2 xn) and

y = (yl, y2 yw) respectively, the input-

output correlation of back-propagation type

network as a whole is expressed by;

y = NN(x) (4)

The structure of model function NN

(x) is characterized by M-layers [ulX u2×..

×uM] where ui, i = 1, 2..... M are the
numbem of neurons within the input, hidden

and output layers respectively. Fig. 2 shows

a structure of back propagation type

network consisting of four-layers [3× 2 X 2

×2].
Fundamental considerations made on

the NDF are that the model equations yl,

y2, and y3 in the consequent paris are

identified as the non-linear Eq. (4) for

obtaining the model equations.

The fundamental consideration

made on the membership functions in the

antecedent parts is a method shown in Fig.

170

.

If the relationships between rules R1,

R2, R3 and input data (xil, xi2) where i = 1,

2 N are considered, the first data xl are

(xll, x12) = (0.2, 0.15), and these data belong

to rule R1. Thus the data attribution to the

rule can be expressed by (R1, R2, R3) = (1,

O, (3). The back-propagation type network

three- layers [2 × 3 × 2] of which input and

output layer are (Xll, x12) and (R1, R2, R3)

respectively can be derived from the input-

output data utilized in the learning process.

However, the maximum number of learning

is limited to be less than about 1000.
When another data different from

the input-output data are assigned to the

neural network, the estimated values of

back propagation type neural network are

considered as membership values of fuzzy

sets in the antecedent parts since the

estimated value represents the attribution of

data to each rule. A rule division performed

by NDF is typified in Fig. 4 which shows
non-linear divisions unlike the rectangular

divisions shown in Fig. 2.

Pao proposed a method for

determining fuzzy sets by using a neural

network [9], and obtained intersections and

union sets of fuzzy sets. However, what he

carried out were the determinations of

intersection and union sets of fuzzy sets

from the coupling patterns between each

unit of neural network, and was not the

type determining the shape of fuzzy sets

from the input-output data such as

excutable by NDF.

In a NDF, the control rules are

represented by an IF-THEN format shown

below.

Fts ; IF x = (xl, x2 xn) belongs to As,

THEN ys = NNs(xl, x2 xm)

where s = 1, 2 r, m<_n (5)

The number of inference rules

employed here is expressed by r, and AS

represents a fuzzy set in the input space

area of antecedent parts. The degree of

belongings of input x = (xl, x2 xn) to the

s-th inference rule is defined to as the

membership value of fuzzy sets As to the

input x. Furthermore, the amount of

operations ys of consequent parts is an

estimated value for a case where a

combination of input variables (xl, x2

xn0 is substituted in the input layer of

back propagation type network, wherein the

number of variables employed in this case is

m according to a method for selecting the

optimum model employing back-propagation

type network.

Although it is also possible to

determine an overall non-linear relationship

by using only one back-propagation type

network, the determination of overall input-

output relationship by applying back-

propagation type network for each paz_ial

Space is considered more advantageous than

employing only one back-propagation type

network for better clarification of overall

non-linear relationship.

In order to carry out an optimum

model selection for the back- propagation

type network of consequent parts, a stepwise

method [10] by which a specified input

variable derived from a combination of input

variables is introduced and removed for

obtaining a model which outputs an optimum

estimated value, is available.

In the present work, only an

elimination of input variables from a

combination of input variables by utilizing

back-propagation type network is performed

for deriving an optimum combination of

input variables and model formula. A
summation of the second powers of residuals

is employed for evaluating and dtermining

the input variables.

An explanation for the algorithm of

NDF is given in the following referring a

block diagram of NDF shown in Fig. 5. The

stepwise procedures taken for obtaining the

inference rules and the control value yi$

for the input data xi are as follows.

Step 1: Selection of input variables, xl, x2

xn, which are related to the control value y.

This is for an assumed case where the input

171

-output variables (yi, xi) = (yi, xil, xi2
xin) where i = l, 2 N, are obtained and

the input data xij where j = l, 2 n, are
the i-th data of input variable x_

Step D Division of input-output data into r

classes of Rs where s = 1, 2 r. As

mentioned before, each partition is regarded

as an inference rule Rs, and the input-

output data for each Rs are expressed by (yi

(s), xi(s)) where i = 1, 2..... Ns providing that

Ns is a number of input-output data for

each Rs.

Step 3: Decision of membership functions in

the antecedent parts by using the neural

network NNmem shown Fig. 5 providing that

the structure of a back-propagation type

network is a M-layered In x u2 X..xuM-lx r].

The method for determining the form of

membership functions is described previously.

Step 4: Decision of control models in the

consequent parts by using the neural

networks NN1, NN2 NNr shown in Fig. 5

providing that the structure of each back-

propagation type network NNs is a M-

layered [kxu2 x...xuM-Ixl] where k = n, n-

1.... 1, and selections of optimum model for

each NNs are performed.

Consequently, the stepwise procedures

for determining input variables by utilizing

back- propagation type network, and tile

method for determining the structure of

consequent parts are described in the

following.

Setting a condition at k = n, the

input variables xi = (xil, xi2 xii0 where i

= l, 2..... N, are assigned for the input layer

of each NNs, and the output variables yi is

assigned for the output layer of each NNs,

where the input variables assigned for the

input layer and the output variables

assigned for the output layer are

respectively expressed by:

s = {xl, x2 xk} (6)

s: {y} (7)

where s represents a set of input variables

assigned for the input layer of each back-

propagation type network NNs, and s

represents a set of output variables assigned

for the output layer of NNs.

An estimation eyi for the input data

xil, xi2 xik can be obtained after

repeated learnings made on the back-

propagation type network of NNs. However,
the number of learnings is set at

approximately 3000. Then the sum of mean

squared errors of the output data yi and

estimation eyi is calculated for obtaining an
evaluation value @ks required for

determining the input variables.

N

-eyi))/N,® ks = (T(yi .2
i=l

s=l, 2 r. (8)

In order to study the degree of

correlation of the input variables xj to the

output variables y, the input variable xj is

temporarily removed from the set of input

variables {xl, x2 xk}. The input data

from which the input variables xj is

removed, xil xij-1 xij+l xjk where i

= 1, 2..... N, are assigned to the input layer

of M- layer of the back propagation type

network [k-1 u2 ... uM-1 1], and the

output data yi are assigned to the output

layer. Then, the estimation eyi' for the input

data xil xij-1 xij+l, can be obtained

after the back- propagation learning. An

evaluation value Ok- lsj required for

determining the input variables is derived by
calculating the sum of mean squared errors

of the output data yi for this estimation eyf.

N

@k-lsj=()-(yi-eyi')')/N, s = l, 2.... r. (9)
i=l

The same calculations are conducted

for the input variables other than xj for

determining the evaluations @k-lsl, @k-ls2,

.... @k-lsj @k-lsk. The calculation of

evaluation which takes a minimum value,

172

Ok-lsc, can be obtained by;

@k-lsc = minOk-lsj,

where j = 1, 2 k. (lo)

Eq. 10 shows that the evaluation Ok-lsc

obtained by removing the input variables xc

from the set of input variables takes a

minimum value among evaluations @k-lsl,

@k-Is2 @k-lsj @k-lsk. By comparing

the value of @k-lsc of Eq. 10 to the value

of @ks of Eq. 8, the set of variables, As, is

altered as follows.

2_s = {xl, x2 xc-1, xc+l xld,
If Ok-lsc < Oks (U)

As = (xl, x2..... xk},

If @k-lsc _ @ks (12)

When Eq. 11 is established, the sum

of mean squared errors can be decreased by

removing the input variables xc, and this

means that the estimation eyi' represents yi

better than eyi.

Therefore, the correlation of input

variables xc to the output variables y is

considered weak, and the input variables

are removed from the input variable sets

As. As a result of this, a set of newly

established input variables is then consisted

of k-1 input variables.
On the other hand, the effectiveness

obtained by removing input variables

temporarily can not be attained when Eq. 12

is established, and this fact means that the

input variables xc are strongly correlated

with the output variables y, and the number

of sets of input variables As is left

unchanged as k.

In cases where the input variables

can be reduced, k is altered to n-l, n-2

1, and Step 4 is repeated until Eq. 12 can be

establislmd, and the procedures for reducing

the input variables of back-propagation type

network NNs are completed until Eq. 12 can

be established,

Thus, the back- propagation type

network NNs having the final set of input

variables, As = {xl, x2 xm} obtained at

the time of procedure completion, becomes an

optimum back- propagation type network

representing the structure of consequent

parts of rule FLs. The same step procedures

are conducted for each NNs for determining

the consequent parts of all the inference

rules. This procedure to reduce the number

of input variables is called a stepwise

variable reduction method utilizing back-

propagation type network.

Step 5: The estimation yi2< can be derived

by the equation shown below.

l"

_'-pAs (xil, xi2 xin) xmeyi(s)
s--1

yi*= r (13)

_"pAs (xil, xi2 xin)
s=l

i=l, 2,..,, N.

where meyis is an estimation obtained by the

optimum back - propagation type network

derived by Step 4.

Fig. 5 shows that the estimation yi_

can be derived from the results obtained by

conducting product operations between the

membership values of antecedent parts of

each inference rules, or pAs(xil, xi2

xin) and the estimation of consequent

pa_, or meyi (s), and by conducting

summation operations between each rule

continuously. However, Fig. 5 shows a

case where a condition of pAs(xil, xi2

xin) = 1 is established.

3. APPLICATION TO INVERTED PENDULUM

SYSTEM

The NDF proposed by the authors is

capable of forming inference rules

automatically, i.e., the function of self-

autotuning, and proposed here is an inverted

pendulum system to which a learning

function by using a NDF is applied. In the

algorithm employed for the experiment, four

inputs and one output data are acquired by

observing manual operating controls, and

173

fuzzy inference rules and membership
functions are then automatically constructed

from the acquired data by using the

algorithm of NDF.

Fig. 6 shows a structure of inverted

pendulum system consisting of four elements

explained in the following;

1) Cart which runs on a rail.

2) Pendulum rotatable freely around an axis

of cart.

3) Motor which drives the cart.

4) Fixed pulleys and belt system which

connect above three parts.

The pendulum angle apart from the

perpendicular 0 degree and the distance

from the original position of cart are

detected by the potentiometer b and a shown

in Fig. 6 respectively. These are digitized by

an AD converter, and the digitized signals

are fed to a personal computer wherein the

velocities of inverted pendulum angle and

the cart distance are calculated from the

differences in those obtained at every

sampling. The output for the motor control

system is then calculated from four

variables, i.e., the pendulum angle, angular

velocity, cart distance, and the cart velocity

by using an algorithm of NDF. As the motor

control signal is derived by a pemonal

computer in a digital form, this is converted

into an analog value through a DA

converter.

The inverted pendulum system has

two control areas consisting of a linear-

controlling area where the pendulum is

standing, and a non-linear controlling area

where the pendulum falls. The authors

constructed an inverted pendulum system in

the linear-controlling area by using a

conventional fuzzy control, and a control

model constructed in the non-linear

controlling area by utilizing NOV, is

reported here,

The configuration of inverted

pendulum system and the controlcomputer

are as follows.

Body : Length of 1,410mm; width of 400ram,

height of 880ram.

Pendulum : Length of 400ram , weight of

40g , diameter of 4mm.

Drive force : 25W DC motor with a gear ratio
of 12.5 : 1.

Sensors : Potentiometer to measure the

distance from the original position of the

cart, and another potentiometer to measure

the pendulum angle.

Micro-computer : CPU 80286

Program : C-language, 21K bytes.

The preparation of control rules

applicable to an inverted pendulum made

according to an algorithm developed for

constructing the inference rules by applying

NDF is now described in the folowing.

Step 1: Preparation of input-output data.

This is acquired by an operator who tries to

swing up a pendulum by moving the cart

right or left direction on the rail by pressing

either of corresponding controller buttons

until the pendulum is brought to its inverted

position, and the following input-output data

with a sampling period of 4 msec are
recorded:

Output variable

y : Motor control signal (V).

input variables

xl : Distance from the original cart position.

x2 : Velocity of xl (cmjsec).

x3 : Pendulum angle (deg).

x4 : Velocity of x3 (degJsec).

where the input variables x2 and x4 are

derived from the differences produced in xl

and x3 values. Approximately 1,000 to 3,000

data are acquired from these manual

operations, and from these, 98 input-output

data shown in Table 1 applied for the NDF
are extracted.

Step 2: Setting of two rules for the input-

output data considering data distributions.

Step 3: Determination of membership

functions of antecedent parts. A three-

layered [4 X 6 × 2] back - propagation type

network employed here for determining the

antecedent part construction is employed

here, and the number of learnings is set at

about 1000.

174

Step 4: Determination of consequent part
structure. A three-layered [k x 6 x 1] where k

= 4, 3, 2, 1, back-propagation type network
for determining the consequent part

structure ix employed here, and the number
of learnings of each back-propagation type
network is set at about 3000.

By using a stepwise variable

reduction method, we obtain:

@41 = 0.016 (14)

@ 311= min@31j (= 0.007), j = I, 2, 3, 4. (15)

Therefore,

@311 < @41 06)

Thus, by removing the input

variables xl, we obtain As = {x2, x3, x4}. As

for As = {x2, x3, x4}, a stepwise variable

reduction method is applied again. By

combining Eqs. 8, 9, and 10, we obtain the

followings.

@ 311 = 0.007 07)

@ 213 = min@21j (= 0.021), j = 2, 3, 4. (18)

This means,

@213 > @311 (19)

Thus, no reduction of input variables

is made, and the algorithm for Rule 1 is

completed by tile second calculation process.

Tile inference rules consequently obtained

by these are as follow_

R1 ; IF x = (xl, x2, x3, x4) belongs to AI,

THEN yl = NNI(x2, x3, x4),

R2 ; IF x = (xl, x2, x3, x4) belongs to A2,

THEN y2 = NN2(xl, x2, x4) (20)

Photographs 1 and 2 show the swing-

up motions of pendulum controlled by fuzzy

inference rules expressed by Eq. (20).

Photograph 1 shows sequential motions of

pendulum swang from its stable equillibrium

state to an inverted stand-still state. The

estimation yi* can be derived from Eq. (13).

The pendulum can be surely brought to its

inverted position regardless the cart position

on the rail, or a disturbance applied to the

pendulum. Photograph 2 shows the controls

of swing- up motion for various given

pendulum angles.

An experimental study for the

limitation of control performed by NDF is

conducted by changing the parameters which

govern the dynamic characteristics of

controlled object, and the length of pendulum

is taken as a parameter governing the

dynamic characteristics of pendulum here.

The initial position of cart is set at the

center position of belt on which the inverted

pendulum device is mounted, and the

pendulum angle is set at 0 degree when it is

hanged down initially and +180 degree is

specified when the pondulum is in an

inverted position. The angle is incremented

for its clockwise rotation, and decremented

for its anti-clockwise rotation.

The inference rules are constructed

for a case where pendulum length is 40 cm,

and Fig. 7 shows a response of pendulum of

such. Figs, 8, 9, and l0 respectively show the

responses of the 20, 30, and 50 cm long

pendulums. The shifts of pendulum angle are

shown by solid lines, and the changes of

angular velocity are shown by broken lines

in these figures. However, only the changes

of pendulum angle and angular velocity

until the pendulum comes to an inverted

position, and no response after completion of

inversion are shown there.

As for the learning of inverted

pendulum, the swing-up process of pendulum

is learnt for constructing an inference rules

applicable to the process of pendulum

starting from the hanged down postion to a

nearly inverted position. The inverted

position is defined as a pendulum angle

close to +180 degree and its angular velocity

nearly zero at that time.

As shown in Fig. 7, the pendulum

reaches at -180 degrees at 5.4 seconds after

starting of control attaining an angular

velocity of about 0 deg / sec, and the

175

pendulum stand still at an inverted position.
This is rather natural consequence since an

inference rules are established for a 40 cm

long pendulum.
In a case where the length of

pendulum is set at 20 cm as shown in Fig.

8, a large velocity change is observed, and

the angle became 180 degrees at 6.2 seconds

attaining an angular velocity of about 0 deg

ffsec. Although the pendulum reaches at an

inverted position and stays there, the

angular velocity is larger and a longer lead-

in period is required.

Fig. 9 shows a transient response of

a 30 cm long pendulum. The pendulum is

brought to its inverted lx_ition showing a

response similar to that obtained with the 40

cm long pendulum, but the angle reaches at

-180 degrees at 3.9 sec yielding a higher

anigular velocity which equals to about one

half of that obtained with the 20 cm long

pendulum. The overall controllable
characteristics is silimar to that of 40 cm

long pendulum.

Fig. IO shows a transient response

obtained with a 50 cm long pendulum which

was unable to brought to its inverted

position. As seen in Fig. lO, the pendulum

angle could not be brought to its +180 degree

position despite of longer lead-in period. The

correlation between dynamic characteristics

of pendulum and the variable length of

pendulum can be summarized as follows.

l) By applying a NDF to a pendulum system

of which length is varied from 40 to 20 cm,

a stable operation to bring the pendulum to

its inverted position became feasible despite

of lead-in period required for its motions.

That is to say, the robustness of NDF is

higher for the shorter length pendulum.

2) for the cases of longer pendulums,"

however, the suppression of deviations of the

control system can not be attained, and this

means that a relearning or additional

learning is necessary for the NDF applied

for a longer pendulum.

4. CONCLUSION

While the conventional fuzzy

reasoning is associated with inherent tuning
problems, NDF is, upon input - output

variables are given, capable of determtng an

optimum inference rules and membership

functions by utilizing its nonlinearity of

back-propagation type network and learning

capabilities. In order to verify the

usefullness of NDF, it is applied to an

experimentally constructed pendulum system

wherein the pendulum is brought to its

inverted position and stayed there starting

from its stable hanged position. The length

of pendulum is also altered for confirming

itrs effects on the control characteristics of
NDF.

Since this method is capable of

deriving an inference rules by using the

learning function of back-propagation type

network, the learning function can be

introduced in the fuzzy control. The

development of learning function adaptive to

the changes of dynamic inference

environment should be an important subject

to be discussed in future.

5. REFERENCES

l) Hirota, l<aoru, " Robotics and Auto,nation

Industrial Applications in Japan", 3rd IFSA

Congress, Seattle, 1989, pp.229-2.30.

2) Lee, Chuen-Chien, "A Self-Learning Rule

-Based Controller with Approximate

Reasoning", Memorandom, No. UCB J ERL,

MogJ84, Univ. Calf. Berk, 1989.

3) Hayashi, Isao, Nomura, Hiroyoshi and

Wakami, Noboru, "Artificial Neural Network

Driven Fuzzy Control and it's Application to

the Learning of Inverted Pendulum System",

3rd IFSA Congress, Seattle, 1989, pp.610-613.

4) Takagi, Hideo and Hayashi, Isao, "

Artificial Neural Network Driven Fuzzy

Reasoning", Int. J. Approximafe Reasoning,

1990, (in press).

5) Anderson, James and Rosenfeld, Edward, "

Neurocomputing", MIT Press, Cambridge,

Mass.: 1988.

176

6) Tank, David and Hopplield, John, _Co]lective

Computations in Neuronlike Circuits _,

Scientific American, December, 1987, pp. 104-

114.

7) Rumlhart, David E., Hinton, Geoffrey E., and

Williams, Ronald J., "Learning Representaions

by Back-propagating Errors _, Nature_ Vol.323,

No.0, 1986, pp.533-536.

8) Sugeno, Michio and Kang, G.T., "Structure

identification of fuzzy model", Fuzzy Sets and

Systems, Vo1.28, No.l, 1988, pp.15-33.

9) Pao, Yoh- Han, " Adaptive Pattern

Recognition and Neural Networks", Addison-

Wesley, 1989.

10) Draper, N.R. and Smith, H., " Applied

Regression Analysis _, John Wiley & Sons, 1966.

177

X2

n_

0 X_ 0 Xl

Fig.1 Conventional Fuzzy Partition of Rules

×

Fig.2 Example of Neural Network

X2

0 XI

Fig.4 Proposed Fuzzy Partition of Rules

X,

0.4

0.15

0 0.2 0.5

Xz

R, o R,

R, •

X_ R,

R, 0.4 n._,.._........_.

X , 0 0.2 0.5
1 X,

OATh for learnin_ •

OATh For checking •
N N ae, R 2

X,

[............. j R,

Wo. I R, R, R,

I I 0 0

no. R,[R, R)

, o,lo

Fig.3 Decision of Membership Function in Antecedent Paris of Rules

178

NN

Aa|¢ceden!

Pztt

Input Var.

Y (st iiJ t¢_ Ve_N¢S

X_ Xj X.

Fig.5 Block Diagram of Neural Network Driven Fuzzy Reasoning

Fig.6 Structure of Inverted Pendulum System

Tablel Input and Output data of Inverted Pendulum System

Input Oata

Ic,}I x,lc*/sccl

.1482 1 0,0000

.02011 8,5486

,2197 I 29,9073

,8338 t 38.4472

.95]0 1 4.2697

.3718 I -21.3586

,3319 I -38,4560

.1432 t -42.72_

97I 198911- .456o

0ulput Data

x, [dcz) x, [des/see] y [v]

178. 5074 0. 00001 0. 7597

180.91291 34.5660 0.7421

185.6439 34.5660 ' O. 7617

188.4660 0.0_0 0. 0039

182.7386, -]21.0536 -0.71f_8"

165.3085 -155.6554 -0.7968

15[.5283 -69. 1678 -0.7519

150.9487 51.8840 -0.7519

86.663 -380.4464
1_.z743 -839.8376 -0.7265 (
117.4961 -622.5536 -0.7519 I

56.6514 -345.8786 -0.7519 J

27.0170 -138.3357 0.0039 I

16.6419 -5[.8822 -0.0019 {

179

Angle (de0

45

1

Angle Velocity

(deg/see)

/i.,
' " ' E00

" t,<'71 !:;tj,,o...-'=
-I,?00

0 1.0 2.0 3.0 4.0

Fig.? Angle and Angular Velocity

of 40 cm Long Pendulum

IDS

90

45

I

-,15

-0_

-I:-_

-I_

..i ,it,..- , _... -- .,

-_,,_i _i//'_,,t;/i

O 1.0 2.0 3.0

Fig.8 Angle and Angular Velocity'

of 20 em Long Pendulum

1,_0o

1ft'0

_"t'O

O

-_2Z0

-IlX'IO

-I£GO

I.'.'0

0

-45

-_

-I;5

- 1:Tt't

Angle

A__,. :,'_ /'_- :/-.

" ^°"°"_::_;:L
0 1.0 2.0 3.0 4.0

I,'(10

?tl]

o

-3[I_

,-(00

-001

-I:."00

0

-I},$

-lEt3

_',__4__H

V

Anllle

/l fl fi /_ t'_

_ tit 1!_,1

"'i7
0 1.0 2.0 3.0 4.0

I;'t'O

900

_tTt]

I]

-S-('O

-12£0

Fig.9 Angle and Angular Velocity

of 30 cm Long Pendulum

Fig.10 Angle and Angular Velocity

of 50 cm Long Pendulum

180

f

Photo.l Control of Inverted Pendulum System

181

(No.l)

ORIGINAL PAGE IS
OF POOR QUALITY

Photo.2 Control of Inverted Pendulum System (No.2)

182

ORIGINAL PAGE IS
OF POOR QUALITY

N91-21786

Solution of Inverse Problem of Fuzzy Relational Equation by

using Perceptron Model

Kaoru HIROTA *

Norikazu IKOMA **

• Department of Instrument and Control Engineering. College of Engineering, HOSEI University
• * The HOSEI University Graduate School, Engineering Division, System Engineering

ABSTRACT

Max-rain fuzzy relational system can be regarded as a network of max
and min operational elements. Thus the inverse problem of fuzzy relational

equation is interpreted as an input estimation problem from output values in
the corresponding network. An approximate network model of fuzzy relational
system is proposed. An algorithm of obtaining an approximate solution of the
system is presented by using a neural network technique. The availability is dis-
cussed with a numerical experiment.

Key words : fuzzy relation, fuzzy inverse problem, neural network, per-
ceptron model

In troduction

Inverse problem of fuzzy relational equation (Fuzzy Inverse Problem) was proposed by
E.Sanchez in 197611]. The solution of fuzzy inverse problem was shown by Tukamoto et al in
197712]. And now, it is used for diagnosis of complicated systems.

Max-rain fuzzy relational system can be regarded as a network which consists of max and
rain operational elements. Thus the fuzzy inverse problem is interpreted as an input value esti-
mation problem from output values in the corresponding network.

In this view point, input of network can be identified when output and the network struc-
ture are given. Assuming the network of fuzzy relational system can be approximately con-
structed by the perceptron, we can regard the input of fuzzy system as the input of perceptron
when output and the perceptron structure are given.

In this paper, an input value estimation algorithm based on perceptron model is pro-
posed, and it is applied to solving the fuzzy inverse problem. Numerical experiment is done to
investigate the availability of this method, and the result of experiments is discussed.

Input Estimation Algorithm of Perceptron Model

Perceptron neural network model[3] is used in this paper. It is summarized as follows;

a. Output value ofj -th neuron in the k -th layer is denoted by

b. Threshold value ofj -th neuron in the k -th layer is denoted by

c. Connection coefficient from the i -th neuron in (k-l) th layer to j -th one in k -th

layer is denoted by

,_183

wk-,1] .

d. The relation of above three values are described by (1)-(3).

4--Zw':':u?-'-o:
i

1

/(s)= 1+ exp(-s)

Input estimation algorithm of perceptron model is described as follows.

Preparation

[1]

[2]

Algorithm

[1]

[2]

Assume the perceptron model has n -input items and m -output items.

Define the evaluation function as

E (s)= lj_=I{YJ- UJ(S) }2

where s= [sl,s2,s3,''' sn] and yjis the j-th output value of the perceptron.

1

k .1

Set the initial input s as an arbitrary value.

Calculate output

u= [ul,u2,u3, • • • um]

for the current input value s.

[3] Change the value s according to

ds _E

e-ffs

=-e 3u---'t_ _' _s.t.-' ", 8u.!.._s.!..J

where e is a positive value.

[4] Repeat [2]-[3] until the value E attains a sufficiently small value.

[5] Final value s is the estimated value by the perceptron.

(I)

(2)

(3)

(4)

(5)

Fuzzy Inverse Problem

Fuzzy relation R between set X and set Y is regarded as a fuzzy set on the direct product

of X and Y , and its membership function is denoted by

I.tR ".XxY= {(x ,y)Ix cX ,ye Y } (6).

Assume that A is a fuzzy set on X and B is another fuzzy set on Y , where these

membership functions are I1A and tt B respectively, then fuzzy relation R satisfies (7) which
means (8).

B=R oA (7)

I.tB(y)= max_x {I.tR(x ,y)AI.ta (x)} (8)

If A and B are fuzzy input and output, respectively, then (7) is interpreted as an equa-

tion of the system which has fuzzy input and output.

J

Then the fuzzy inverse problem is the inverse problem of fuzzy relational equation, i. e.

identifying A for the given B and R in the equation (7).

Method of Solving Fuzzy Inverse Problem by using Perceptron Model

This method is divided into two phases , i. e. the learning phase and the solving phase.
The learning phase is summarized as follows;

[1] Let A. and B. be the i -th input and output of fuzzy relation system R (i = 1,2
i !

M) , respecuvely.

[2] Encode A i and B i to x i and Yl ,respectively, according to

[0,1]_ai I---)xi= 2.2x ai- 1.16 [- 1.1,1.1] (9)

[0, I]_bi I---_yi= 0.8x bi + 0.1 _ [0. 1,0.9] (I0).

[3] Let multi layer perceptron be learned by using input-output pair x i
at [2].

After finishing this learning phase, we can get the solution as follows;

[4] Let B be a fuzzy set to be solved in the fuzzy inverse problem.

[5] Encode B to y by using eq. (10).

[6]

[7]

and Yt obtained

Apply the input estimation algorithm to the learned perceptron and estimate the

input for given output y.

Decode y to A by using eq. (9), then we can get the solution of the problem.

Numerical Experimen t

TO investigate the availability of the method discussed in the previous section, a numeri-

cal experiment on a digital computer has been done as follows;

[1] Fuzzy relation, i. e. the solution in the fuzzy inverse problem, is given as (11) in this

experim en t.

[2]

I'ttR(x,,Yt) I-tR(x2,y_) ... ttR(xs,Y_)l I0.6 0.5 0.8 0.3 0.21

l.tR(xl,Y9 ttR(x2,Yz) ... PR(xs,Yg| 0.4 0.1 0.9 0.6 0.4

R=ll.tR(xz,y3) 13.R(x2,Y3) ... pR(xs,y3)/= 0.1 0.1 0.9 0.8 0.5 (11)
|l.tR (xl,y4) _R (x2,y4) -'- _tR(xs,y4)| 0.9 0.2 0.9 0.1 0.5
[llR(xl,y5) IxR(x2,y5) "'" _tR(xs,ys)J 0.4 0.5 0.3 0.8 0.9

[3]

The learning data for the perceptron is generated as follows;

i) Make fuzzy sets A_ - A7776 whose membership values at each element take all com-

bination of values {0, 0.2, 0.4, 0.6, 0.8, 1.0} (c.f. 65 = 7776).

ii) Operate each A. to the fuzzy relation R by using max-rain composition, then we
can get the fuzzy _set B.

!

iii) Encode fuzzy sets A. and B. by eqs' (9) and (10), then we will obtain the learning
l l

data x i and Yi"

Let's move to the learning phase by using x i and Yi as leaning data. The structure of per-
ceptron used in this experiment is shown as in table 1.

ItbeOt.eoft e ei toilnumber of neurons 10 10 5

Error back propagation algorithm[4] is used for learning. Counting the learning process is
defined as follows : one learning process is a learning operation for a paired input-output

data. The perceptron used in this experiment learns about 500 thousand times. The distri-
bution of evaluation function (4) value for learning data is shown in figure 1.

185

[4] The test-data in the fuzzy inverse problem is made as follows;

i) Make fuzzy sets A. whose membership values at each element are random values

from [0,1] (where _ = 1 - 1000 in this experiment). Get B i by compositing A., to
the fuzzy relation R.

[5] Encode B; by eq. (10), and get Yr Applying input estimation algorithm to the percep-
tron, we _ get estimated input value x* r Then we get the solution of fuzzy inverse

problem by decoding x* I to A* i by eq. (9).

[6] Composite the obtained solution A*. to fuzzy relation R , and we get B*. The correct-
ness of solution is considered as th_ closeness of membership value by _each element
between B*. and B.

1 i

[7] Distribution of the values of evaluation functions (12)-(14) for all test-data are shown in
figure 2 - figure 4.

Em,x=Max Ib_-bjl

Emt_=Min Ib_-bjl

(12)

(13)

(14)

for aUj, b: _ Bi,b*j _ B *i.

Discussion

The availability of using perceptron for fuzzy inverse problem was shown trough a
numerical experiment in previous chapter. The approximate solution of the fuzzy inverse prob-
lem is obtained , but its precision is not enough. This is mainly because that the error of
approximation of fuzzy relation by perceptron is not small enough.

Distribution of approximation error of fuzzy relation was shown in figure 1 in the previ-
ous chapter, but the inputs for error measuring are the same one as learning inputs, precisely.
It is necessary to measure the error for no learning inputs. So the distribution of evaluation
function (4) for no learning inputs is shown in figure 5. By comparing error in learning and no
learning cases, it should be noted that the distributions have the same shape. It depends on the
generalization factor of neural networks. Hence it could be considered that the differences
between learning and no learning are independent with the precision of solution.

The distribution of figure 1 and figure 5 are bell shaped but not exponential. This is con-
sidered that the approximation error is not less than a certain threshold value. This is because a

confliction occurs between one learning input-output pair and others. Therefore, if we can
increase the learning times or use more input-output pairs for learning, the improvement of
precision for approximating fuzzy relation is not expected.

Now let's discuss how small the approximation error of fuzzy relation is. The measure-

ment was done as follows; Let change membership value of fuzzy set A at one element in the
interval [0,1], and compare the membership value of fuzzy set B obtained by compositing
fuzzy relation R in eq. (11) and another one obtained from the output of perceptron. The
membership values used for comparison are shown in table-2 and the results are shown in
figure 6 - figure 10. In these figures, the horizontal axis represents membership value of a vari-
able element of fuzzy set A , and vertical axes represent membership values of each element of
fuzzy set B. There exist two lines in these graphs, where one (which has linear shape)
represents the characteristics of approximated fuzzy relation, another (which has not linear

shape) indicates the characteristic of perceptron which approximates the fuzzy relation.

186

table 2 : Conditions of membership value for fuzzy set A

element number fgure number
No.

1 2 3 4 5

1 [0,1] 0.3 0.5 0.2 0.7 fig.6

2 0.3 [0,1] 0.2 0.6 0.4 fig.7

3 0.2 0.6 [0,1] 0.4 0.7 fig.8

4 0.8 0.7 0.2 [0,1] 0.5 fig.9

5 0.2 0.9 0.3 0.4 [0,1] fig.10

Conclusion

Input estimation algorithm of perceptron model has been proposed and applied to the

fuzzy inverse problem. Numerical experiments have been done in order to get the solution of
fuzzy inverse problem. The precision of approximate solution obtained by this method is dis-

cussed, and the approximation error distribution is investigated. From the results of these

numerical experiments, it is concluded that this method is available to obtain the approximate
solution of fuzzy inverse problem.

References

1. E.Sanchez, Resolution of Composite Fuzzy Relation Equations, Information and Control,

30(1), pp.38-48(1976).

2. Tukamoto Y., Tasiro T., Method of Solution to Fuzzy Inverse Problem, Transactions of the

Society of Instrument and Control Engineers, vol 15(1), pp. 21-25(1977) (in Iapanese)

3. F.Rosenblatt, The perceptron : A probabilistic model for information sorage and organization in

the brain. Psychol. Rev. 65(6), pp. 386-408(1958).

4. Runmelhart et al., Learning Representations by Back-propagating errors, Nature 323-9,

pp.533-536(1986)

187

Table 1. Outline of the Perceptron

Outline of the Perceptron

layer number 1 I 2 3 4

number of neurons 5 I 10 10 5

Table 2. Conditions of membership value for fuzzy set A

No.

1
2
3
4
5

Conditions of membership value for fuzzy set A

element number figure number
1 2 3 4

[0,1] 0.3 0.5 0.2
0.3 [0,1] 0.2 0.6
0.2 0.6 [0,1] 0.4
0.8 0.7 0.2 [0,1]
0.2 0.9 0.3 0.4

5

0.7
0.4
0.7
0.5

[O,1]

fig.6

fig.7
fig.8
fig.9

fig. 10

188

1500

1000

500

0

0.0 O.'02

K

1500

1000

500

0

O.O3

Figure 1. Distribution of evaluation function E for learning data

189

100

50

0

I I I

100

50

Figure 2. Distribution of evaluation function Ern_an for meaning evaluation

190

100

50

0

0

I I I

"1
I
i

t
, I
I

I I

1
0.1O.O6 0.15

100

50

0

O.2
Kmx

Figure 3. Distribution of evaluation flmction Emax for maximum evaluation

!91

100

50 }r
I

I
I !

0 0.1 0,15

m

i

i r-I--,
!

O.05

I

100

,50

Figure 4. Distribution of evaluation function E . for minimum evaluation

192

250 25O

200

150

100

50

0 !

0 _ 01 O.02

200

150

i00

5O

0
0.O3
E

Figure 5. Distribution of evaluation function E for no learning data

193

I.0 -

valueof b5

0.0
1.O-

m_b_ship
value of b4

0.0_
1. O-

c_l_rsh_
value of b3

a8-1.

e..rship
valueof b2

meabexslai_
va.k_of bl

0.0_

0.0

1.0

0.0
-I. 0

-0.0
-I. 0

0.0
1.0

0.0
-I. 0

, 0.0
1.0

member._]Spvalueof a

I

O.5

Figure 6. Comparison of fuzzy set B and output of perceptron (No.l)

194

1, 0 -

m_ersh__
valueof b5

0.0_
1.0

valueof b4

_0
1.0-

membership
valu_of b3

1. -

value of b2

a 8-1.

ae_tership
value of bl

0.0_

0.0

./

!

0.5

-I. 0

-0.0
-i. 0

0.0
-1.0

0.0
-I. 0

-0.0
-1.0

, .0.0
1.0

membershipvalueof a

Figure 7. Comparison of fuzzy set B and output of perceptron (No.2)

195

1.0 _

va_ of b5

a8-1°

m_ership
value of b4 "

_abexship

_rship
valu_ of b2

a 8-1.

va.k_ of bl

0.0_

' ' -i. 0

_0
1.0

_0
1.0

1

0.5

_0
1.0

_0
LO

, _0

1o I

membersh.i_value of a

Figure 8. Comparison of fuzzy set B and output of perceptron (No.3)

196

1. 0 -

m_rsl_p
v_l,_of b5

1. --

me_e.r_
value of b4

_e.rship
valueof b3

1.

value of b2

L

_e_bersh_
value of bl

O.0-

0.0

-1.0

O.O
-1.0

O.O
-1.0

O.O
-1.0

O.O
-1.0

, O.O
1.0

membecsl_ value of a

!

O.5

Figure 9. Comparison of fuzzy set B and output of perceptron (No.4)

197

o w i

1.0 =

val_ of b5

1. "

valm of b4

1° --

 exship
value of b3 --

1._-

value of b2

me_exsl_ _
value of b 1

0.0

0.0

-_1.0

0.0
-1.0

0_0
-1.0

i

0.0
-1.0

• , 0.0
1°0

m_cr_ valua of a

! I

_5

Figure 10. Comparison of fuzzy set B and output of perceptron (No.5)

198

Overview of LIFE (Laboratory for International Fuzzy Engineering)
Research

(Paper not provided by publication date)

199

EXPERIMENTS ON NEURAL NETWORK ARCHITECTURES

FOR FUZZY LOGIC

James M. Keller

Electrical and Computer Engineering

University of Missouri - Columbia

Columbia, MO 65211

ABSTRACT

The use of fuzzy logic to model and manage uncertainty in a rule-based system places

high computational demands on an inference engine. In an earlier paper, we introduced a

trainable neural network structure for fuzzy logic. These networks can learn and extrapolate

complex relationships between possibility distributions for the antecedents and consequents

in the rules. In this paper, the power of these networks are further explored. The

insensitivity of the output to noisy input distributions (which are likely if the clauses are

generated from real data) is demonstrated as well as the ability of the networks to

internalize multiple conjunctive clause and disjunctive clause rules. Since different rules

(with same variables) can be encoded in a single network, this approach to fuzzy logic

inference provides a natural mechanism for rule conflict resolution.

1. INTRODUCTION.

In dealing with automated decision making problems, and computer vision in

particular, there is a growing need for modeling and managing uncertainty. Computer vision

is beset with uncertainty of all types. A partial list of the causes of such uncertainty include:

complexity of the problems,

questions which are ill-posed,

vagueness of class definitions,

imprecisions in computations,

noise of various sorts,

ambiguity of representations, and

problems in scene interpretation.

201

Rule-based approaches for handling these problems have gained popularity in recent years

[1-6]. They offer a degree of flexibility not found in traditional approaches. The systems

based on classical (crisp) logic need to incorporate, as an add-on, the processing of the

uncertainty in the information. Methods to accomplish this include heuristic approaches [7,

8], probability theory [9,10], Dempster-Shafer belief theory [4,5,11], and fuzzy set theory

[5,6,12-14].

Fuzzy logic, on the other hand, is a natural mechanism for propagating uncertainty

explicitly in a rule base. All propositions are modeled by possibility distributions over

appropriate domains. For example, a computer vision system may have rules like

IF the range is LONG, THEN

the prescreener window size is SMALL;

or

IF the color is MOSTLY RED, THEN

the steak is MEDIUM RARE is TRUE.

Here, LONG, SMALL, MOSTLY RED and TRUE are modeled by fuzzy subsets over

appropriate domains of discourse. The possibility distributions can be generated from

various histograms of feature data extracted from images, fuzzification of values produced

by pattern recognition algorithms, experts expressing (free form) opinions on some

questions, or possibly generated by a neural network learning algorithm.

The generality inherent in fuzzy logic comes at a price. Since all operations involve

sets, rather than numbers, the amount of calculations per inference rises dramatically. Also,

in a fuzzy logic system, generally more rules can be fired at any given instant. One

approach to combat this computational load has been the development of special purpose

202

chips which perform particular versions of fuzzy inference [15]. Artificial Neural Networks

offer the potential of parallel computation with high flexibility. In an earlier paper [16], we

introduced a backpropagation neural network structure to implement fuzzy logic inference.

In this paper we demonstrate further properties of that network. In particular, we show the

insensitivity of the networks to noisy input distributions and to their ability to internalize

rules with multiple conjunctive and disjunctive antecedent clauses.

o FUZZY LOGIC AND NEURAL NETWORKS.

The original fuzzy inference mechanism extended the traditional modus ponens rule

which states that from the propositions

PI: If X is A Then Y is B

and P2: X is A,

we can deduce Y is B. If proposition P2 did not exactly match the antecedent of P1, for

example, X is A', then the modus ponens rule would not apply. However, in [17], Zadeh

extended this rule if A, B, and A' are modeled by fuzzy sets, as suggested above. In this

case, P1 is characterized by a possibility distribution:

l"I_x_r) " R where

..(,,,v) - max

It should be noted that this formula corresponds to the statement "not A or B", the

logical translation of P1- An alternate translation of the rule P1 which corresponds more

closely to multivalue logic is

p.lc(u,v) - rain{l, {(1 - p.a(u)) ÷ p.n(v)}},[17],

203

called the bounded sum.

In either case, Zadeh now makes the inference Y is B' from I_R and I_A' by

a

This is called the compositional rule of inference.

While this formulation of fuzzy inference directly extends modus ponens, it suffers

from some problems [18,19]. In fact, if proposition P2 is X is A, the resultant fuzzy set is

not exactly the fuzzy set B. Several authors [18-20] have performed theoretical

investigations into alternative formulations of fuzzy implications in an attempt to produce

more intuitive results.

In using fuzzy logic in real rule-based systems, the possibility distributions for the

various clauses in the rule base are normally sampled at a fixed number of values over their

respective domains of discourse, creating a vector representation for the possibility

distribution. Table I shows the sampled versions of the "trapezoidal" possibility distributions,

used in the simulation study, sampled at integer values over the domain [1,11]. Clearly, the

sampling frequency has a direct effect on the faithfulness of the representation of the

linguistic terms under consideration and also on the amount of calculation necessary to

perform inference using a composition rule. For a single antecedent clause rule, the

translation becomes a two dimensional matrix and the inference is equivalent to maxtrix-

vector multiplication. As the number of antecedent clauses increases, the storage

(multidimensional matrices) and the computation in the inference process grows

exponentially.

204

Neural network structures offer a means of performing these computations in parallel

with a compact representation. But the ability of such a network to generalize from an

existing training set is the most valuable feature. In [16], we introduced the neural network

architecture for fuzzy logic. Figure 1 displays a three layer feed-forward neural network

which is used in fuzzy logic inference for conjunctive clause rules. It consisted of an input

layer to receive the possibility distributions of the antecedent clauses, one hidden layer to

internalize a representation of the relationships, and an output layer to produce the

possibility distributions of the consequent.

The input layer is not fully connected to the hidden layer. Instead, each antecedent

clause has its own set of hidden neurons to learn the desired relationship. This partitioning

of the hidden layer was done to ease the training burden for multiple clause rules, and to

treat each input clause with its hidden units as a functional block. The training was

performed using the standard back propagation technique [21].

3. EXPERIMENTS.

The neural network architecture performed very well in generalizing the complex

relationships between inputs and outputs. Table II (from [16]) shows the results of the

training and testing of a network to implement the rule: IF X is LOW Then Y is HIGH;

whereas Table III gives the situation for a rule with two conjunctive antecedent clauses. In

both cases, the performance of the networks matched our intuitive expectation.

Figure 2 shows typical responses of a neural network to noise in the input clause. It

can be seen that the errors in the result are of the same order as the error in the input. If

the networks are trained with fewer relationships, e.g. the traditional modus ponens

205

expectations, this error drops significantly.

In order to implement rules with disjunctive antecedent clauses, networks with two

hidden layers were necessary. Table IV displays training relationships for a two clause

disjunctive rule. Note that there are 23 input/output triples necessary to enable the network

to respond appropriately. The training, using backpropagation, of a single hidden layer

network, of the type shown in figure 1, failed to converge on this complex training set. This

caused us to investigate a two hidden layer structure where the first hidden layer was the

same as in figure 1 and the second hidden layer contained 6 neurons totally connected to

those of the first hidden layer and to the nodes of the output layer. This network converged

in 4073 passes through the training set with a total-sum-of-squared error of less than 0.001

for the entire training ensemble. We feel that this is a remarkable achievement, given the

diversity of the responses to the antecedent possibility distributions which were necessary.

This disjunctive structure was further tested with 18 input pairs of clauses including

twelve pairs with varying amounts of additive gaussian noise. For this test set the average

total-sum-of-squared-error per trial was 0.075. In other words, the match to the expected

output in all cases was very good.

As a final note, in [16] we demonstrated that a neural network structure of this type

could encode multiple different rules which shared common antecedent clause variables.

The packing of several rules into a single network has a surprising side benefit of providing

a natural means of conflict resolution in fuzzy logic.

206

4. CONCLUSION.

Fuzzy logic is a powerful tool for managing uncertainty in rule-based systems. Neural

network architectures offer a means of relieving some of the computational burden inherent

in fuzzy logic. Also, these structures can be trained to learn and extrapolate complex

relationships between antecedents and consequents, they are relatively insensitive to noise

in the inputs, and provide a natural mechanism for conflict resolution.

207

Consequent

Output

layer

Hidden

layer

Input (_
layer

Antecedent 1 Antecedent n

Figure 1. A three layer feed forward neural network for fuzzy logic

inference

208

Rule: IF X is MEDIUM THEN Y is HIGH

MEDIUM .00 .00 .25 .50 .75 1.0 .75 .50 .25 .00 .00

INPUT .06 .02 .35 .50 .79 1.0 .72 .54 .29 .01 .00

TSS error = 0.020

12]

1.0

0.8

0.6

0.4

0.2

0.0

MEDIUM

T • , INPUT

2 4 6 8 10 12

HIGH .00 .00 .00 .00 .00 .00 .20 .40 .60 .80 1.0

OUTPUT .00 .00 .00 .00 .00 .00 .28 .48 .67 .84 1.0

TSS error = 0.019

1.2

1.0

0.8

0.6

0.4

0.2

0.0 , m

0

HIGH

OUTPUT

I " " I I I I I

2 4 6 8 10 12

Figure 2(a) Response of rule network to an input with small amount of additive gaussian
noise.

209

MEDIUM .00 .00 .25 .50 .75 1.0 .75 .50 .25 .00 .00

INPUT .00 .08 .24 .52 .77 1.0 .64 .41 .43 .00 .00

1.2

TSS error = 0.060

1.0'

0.8

0.6

0.4

0.2

0.0

MEDIUM

• INPUT

• " " " • " " " T • • |

2 4 6 8 10 12

HIGH .00 .00 .00 .00 .00 .00 .20 .40 .60 .80 1.0

OUTPUT .00 .00 .00 .00 .00 .00 .25 .46 .65 .83 1.0

TSS error = 0.010

1.2

1.0

0.8

0.6,

0.4

0.2

0.0 m m m m
• • | • . I " " I " ' !

0 2 4 6 8

HIGH

• - O_rTPUT

I • • !

10 12

Figure 2(b) Response of rule network to an input with a larger amount of additive
gaussian noise.

210

Table I. The meaning of linguistic terms defined on the

domain [1,11] and sampled at integer points.

Label Nembershl p

LOW 1.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00 O.OOlO.O0 0.00

VERY LOW 1.00 0.45 0.11 0.00 iO.O0 0.00 0.00 0.00 0.00 I0.00 0.00

MORL LOW 1.00 0.82 0.57 0.00 iO.O0 0.00 0.00 0.00 0.00 0.00 0.00

NOT LOW 0.00 0.33 i0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NOISY LOW (I) 1.00 0.700.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

.-_ ... ! ,.,

NOISY LOW (2) 1.00 0.70 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NOISY MEDIUM 0.00 0.00 0.30 0.53 0.81 1.00 0.80 0.50 0.20 0.00 0.00

SHIFTED LOW 1.00 1.00 1.00 0.67 0.33 0.00 0.00 0.00 0.00 0.00 0.00

MEDIUM 0.00 0.00 0.25 0.50 0.75 1.00 0.75 0.500.25 0.00 0.00
==,

MORL MEDIUM 0.00 0.00 0.50 0.71 0.87 1.00 0.87 0.71 0.50 0.00 0.00

NOT MEDIUM 1.00 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.00

HIGH 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.40 0.60 0.80 1.00

VERY HIGH 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.16 0.36 0.64 1.00

MORL HIGH 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.63'0.77 0.89 1.00

UNKNOWN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MORL = more or less.

Note: VerynA is determined by pv_.A(x) - pa(x) "_1

MORLnA is determined by puo_.a(x) - [pa(x)] u"+l

211

Table Ii. Performance of Fuzzy Logic Rule network with 8 hidden neurons for rule

IF X is LOW THEN Y is HIGH.

A. Traininq Data*

Input

LOW

VERY LOW
MORL LOW

NOT LOW

Output

HIGH

VERY HIGH
MORL HIGH

UNKNOWN

Training terminated when the total sum of

squared error dropped below e = .001

B° Testing Results

Input

VERY z LOW

MORL 2 LOW

MEDIUM

VERY MEDIUM

MORL MEDIUM

HIGH

NOISY LOW (!)

NOISY LOW (2)

SHIFTED LOW

Expected
Output

VERY 2 HIGH

MORL 2 HIGH

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

HIGH

HIGH

Actual Output

O0 i.00 .00 .00 .00 .00 .03 .I0 .27 1.56 1.0

O0 .01 .01 .01 .00 .01 .56 .71 .82 .91 1.0

•99 .99 .99 .99 .99 .99 .99 .99 .99 99 1.0

•98 .98 .98 .98 .98 .98 .99 .99 .99 .99 1.0

•99 .99 .99 .99 .99 .99 .99 .99 .99 .99 .99

•99 .99 .99 .99 .99 .99 .99 .99 .99 .t99 .99

•00 .00 .00 .00 .00 .00 .26 .47 .66 .83 l.O

.00 .00 .00 .00 .00 .00 .19 .39 .59 _80 1.0

•09 .09 .12 .09 .09 .09 .91 .92 .94 1.97 1.0

Total Sum
Squared
Error

.007

.030

.001

.003

.001

.001

.013

.0001

212

Table III. Performance of a two antecedent clause Fuzzy Logic Rule

network with 16 hidden neurons (two groups of eight).

A. Training Data*

Input

(LOW,MEDIUM)

(VERY LOW,VERY MEDIUM)

(MORL LOW,MORL MEDIUM)

(NOT LOW,MEDIUM)

(LOW,NOT MEDIUM)

Output

HIGH

VERY HIGH

MORL HIGH

UNKNOWN

UNKNOWN

Training converged in 1823 iterations.

B° Testing Results

Input Actual Output

(NOISY LOW(1),MEDIUM)

(NOISY LOW(2),MEDIUM)

(VERY2 LOW,MEDIUM)

.00 .00 .00!.00 .00 .00 .20 .40 .60 .80

.00 .00 .00 .00 .00 .00 .19 .40 .60 .80

.00 .00 .00 .00 .00 .00 .19 .38 .60 .80

(NOISY LOW(1),NOISY MEDIUM .00 .00'.00 .00 .00 .00 .20 .41 .61 .81

(LOW,VERY 2 MEDIUM)

(VERY 2 LOW,VERY 2 MEDIUM)

(MORL2 LOW,MORL 2 MEDIUM)

(NOT LOW,NOT MEDIUM)

(LOW,SHIFTED MEDIUM)

(MEDIUM,LOW)

1.0'

1.0

1.0

1.0

.00 .00 .00 .00 .00 .00 .05 .17 .36 .64 1.0

.01 .01 .01 .OI .01 .01 .03 .12 .29 .58 1.0

.01 .01 .01 .01 .01 .01 .55 .70 .81 .91 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

.97 .97 .97 .97 .97 .97 .99 .99 .99 1.0 1.0

1.0 1.0 1.0 1.0 l.O 1.0 l.O 1.0 l.O 1.0 l.O

Closest

Linguistic
Term

HIGH

HIGH

HIGH

HIGH

VERY HIGH

VERY 2 HIGH

MORL 2 HIGH

UNKNOWN

UNKNOWN

UNKNOWN

213

Table IV. Training Data for the two disjunctive clause rule:

IF X is LOW OR Y is MEDIUM THEN Z is HIGH.

Input

(Very, MorL) LOW: *

•; (Very, MorL) MEDIUM

Not LOW; Not MEDIUM

MEDIUM; LOW
HIGH; LOW

HIGH; Very LOW
UNKNOWN, HIGH

Output

(Very, MorL) HIGH

(Very, MorL) HIGH
UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

UNKNOWN

* m LOW, MEDIUM, HIGH

Training converged in 4073 iterations, with TSS

error for entire training set less than 0.001

214

.

I.

o

.

°

o

,

°

.

go

10.

11.

12.

13.

]4.

REFERENCES.

Fikes, R., and Nilsson, N., "STRIPS:

theorem proving to problem solving",

1971, pp. 189-208.

a new approach to the application of
Artificial Intelliqence, 2, 3/4,

Barrow, H. and Tenenbaum, J. "MSYS: a system for reasoning about scenes",
Technical Note 121, AI Center, SRI International, March 1976.

Brooks, R., Greiner, R., and Binford, T., "Progress report on a model-based

vision system", Proc. Imaqe Understandinq Workshop, L. Baumann, ed., 1978,

pp. 145-151.

Riseman, E., and Hanson, A, "A methodology for the development of general

knowledge-based version systems", in Vision, BraiD, and Cooperativ_

Computation, M. Arbib and A. Hanson, Eds., MIT Press, Cambridge, MA, 1988,

pp. 285-328.

Wootton, J. Keller, J., Carpenter, C., and Hobs,n, G., "A multiple

hypothesis rule-based automatic target recognizer," in Pattern Recoqnition,
Lecture Notes in Computer Science, Vol. 301, Kittler, J. ed., Springer-

Verlag, Berlin, 315-324, 1988.

Nafarieh, A., and Keller, J. "A fuzzy logic rule-based automatic target

recognizer", Int. J. Intell. Systems, accepted for publication, 1990.

Shortliffe, E., and Buchanan, "A model of inexact reasoning in medicine",

Math Biosci, 23, 1975, pp. 351-379.

Cohen, P., Heuristic Reasoninq About Uncertainty: An Artificial

Intelliqence Approach. Pitman Advanced Publishing Program, 1985.

Pearl, J., "Fusion propagation and structuring in belief networks", Art.
Intell., 29, no. 3, 1986, pp. 241-288.

Cheeseman, P. "A method of computing generalized bayesian probability

values for expert systems", Proc. Eiqht Int. J. Conf. on AI, Karlsrulie,

West Germany.

Li, Z. "Uncertainty management is a pyramid vision system", Int. J. Approx.

Reasoninq, 3, no. I, 1989, pp. 59-85.

Bonissone, P. and Tong, R. "Editorial: Reasoning with uncertainty in

expert systems," Int. J. Man-Machine Studies, Vol. 22, 241-250, 1985.

Zadeh, L. "Fuzzy logic and approximate reasoning," Syntheses, Vol. 30, 407-

428, 1975.

Keller, J., Hobs.n, G., Wootton, J. Nafarieh, A., and Leutkemeyer, K.,

"Fuzzy confidence measures in midlevel vision", IEEE T. Syst., Man, Cvbern,

17, no. 4, 1987, pp. 676-683.

215

i'

15.

16.

17.

18.

19.

2'0,

21.

Togai, M. and Watanabe, H., "Expert system on a chip: an engine for real-

time approximate reasoning", IEEE Expert, Fall 1986, pp. 55-62.

Keller, J. and Tahani, H. "Backpropagation neural networks for fuzzy

logic", Info. Sciences, accepted for publication,]990.

Zadeh, L, "The concept of a linguistic variable and its application to

approximate reasoning," InformatignSciences, Part I, Vol. 8, pp. 199-249;

Part 2, Vol. 8, pp. 301-357; Part 3, Vol. 9, pp. 43-80, 1975.

Nafarieh, A., "A new approach to inference in approximate reasoning and its

application to computer vision," Ph.D. Dissertation, University of
Missouri-Columbia, 1988.

Mizumoto, M., Fukami, S., and Tanaka, K., "Some methods of fuzzy

reasoning," in Advances in Fuzzy Set Theory and Applications, Gupta, M.,

Ragade, R., and Yager, R., eds., North-Holland, Amsterdam, 1979, pp. 117-
]26.

Baldwin, J. and Guild, N. "Feasible algorithms for approximate reasoning

using fuzzy logic," Fuzzy Sets and Systems, Vol. 3, 1980, pp. 225-251.

Rumelhart, D., McClelland, J., and the PDP Research Group, Parallel

Distributed Processinq. Vol. I, MIT Press, Cambridge, MA, 1986.

216

Using Fuzzy Logic to Integrate

Neural Networks and Knowledge-based Systems

John Yen

Department of Computer Science

Texas A&M University

College Station, TX 77843

(409) 845-5466

April 9, 1990

Abstract

Even though the technology of neural nets has been successfully applied to im-

age analysis, signal processing, and pattern recognition, most real world problems

are too complex to be solved purely by neural networks. Two important issues

regarding the application of neural networks to complex problems are (1) the inte-

gration of neural computing and symbolic reasoning, and (2) the monitoring and

control of neural networks. Most hybrid models attempt to integrate neural net

and symbolic processing technologies at the level of basic data representation and

data manipulation mechanisms. However, intrinsic differences in the low-level data

processing of the two technologies limit the effectiveness of that approach. This

paper discusses the role of fuzzy logic in a hybrid architecture that combines the

two technologies at a higher, functional level. Fuzzy inference rules are used to

make plausible inference by combining symbolic information with soft data gener-

ated by neural nets. Neural networks are viewed as modules that perform flexible

classification from low-level sensor data. The symbolic system provides a global

shared knowledge base for communications and a set of control tasks for object-

oriented interface between neural network modules and the symbolic system. Fuzzy

action rules are used to detect situations under which certain control tasks need to

be invoked for neural network modules. The hybrid architecture, which supports

communication and control across multiple cooperative neural nets through the use

of fuzzy rules, enables the construction of modular, flexible, and extensible intelli-

gent systems, reduces the effort for developing and maintaining such systems, and
facilitates their application to complex real world problems that need to perform

low-level data classification as well as high-level problem solving in the presence of

uncertainty and incomplete information.

217

1 Introduction

Recent development of neural network technology has demonstrated many promising

applications in the areas of pattern recognition, image processing, and speech recognition.

However, most real world problems are too complex to be solved purely by current neural

network technologies. This paper addresses two important issues regarding building

complex intelligent computer systems based on neural networks.

. How to integrate neural computing with symbolic reasoning?

A complex application usually can benefit from a synergistic integration of neural

computing and symbolic reasoning. For example, in anti-submarine warfare, one

might like to combine signal processing results computed in a neural net with sym-

bolic analyses of evidence such as database information (e.g., records of confirmed

vessel departures from port) and extended inference procedures (e.g., hypotheses

about plausible mission plans). Many other problems, ranging from speech and

vision to space applications, share this property of needing synergy between neural

nets and symbolic approaches.

, How to monitor and control the behavior of neural networks?

If one wishes to construct a real world application such as anti-submarine warfare

using neural networks, it is crucial to have mechanisms for interpreting and react-

ing to the results produced by the neural nets, so that the overall system can cope

with the rapidly changing and unanticipated situations. For example, after being

activated by an input pattern, a bidirectional associative memory, or BAM[ll],

might converge to a pattern not belonging to the set of training patterns. This

misclassification phenomenon can be caused by having overly similar or numer-

ous training patterns. In either case, the BAM needs to be modified (i.e., certain

training patterns need to be removed from the training set) to improve its perfor-

mance. Therefore, the system needs a controller that oversees the behavior of the

neural networks. A general mechanism that supports the control across multiple

cooperative neural nets will enable the construction of modular, flexible, and ex-

tensible neural net systems, reduce the effort for developing and maintaining such

systems, and facilitate their application to complex real world problems. The need

of a higher-level system for evaluating the performance of neural networks has also

been suggested by other researchers [14].

This paper discusses the role of fuzzy logic in integrating neural networks and sym-

bolic systems and in supervising the behavior of neural networks. To do this, we propose

a hybrid architecture that uses fuzzy logic to combine the two technologies at a higher,

218

functional level. Two types of fuzzy rules are supported by the architecture: fuzzy infer-

ence rules and fuzzy action rules. Fuzzy inference rules are used to assimilate the outputs

of neural nets, which are often soft data [24], into the symbolic system. Fuzzy action

rules are used to issue control tasks, which are implemented by methods in object-oriented

programming, for activating, training, and modifying neural nets. Neural networks are

viewed as modules that perform flexible classification. The symbolic system provides a

global shared knowledge base for communications and a fuzzy rule interpreter for per-

forming rule-based reasoning.

Most hybrid models attempt to integrate neural net and symbolic processing tech-

nologies at the level of basic data representation and data manipulation mechanisms.

However, intrinsic differences in the low-level data processing of the two technologies

limit the effectiveness of that approach. In contrast, our approach combines the two

technologies at a higher, functional level. The symbolic system views neural networks

as modules that (1) extend its reasoning capabilities into flexible classification and data

associations, and (2) extend its learning capabilities into adaptive learning. Neural nets

each view the symbolic system as providing a global shared memory for communications

and a controller, built using fuzzy action rules, for activating, training, and monitoring

them. Fuzzy inference rules are used to pass data between the two subsystems; and fuzzy

action rules are used to pass action between the two.

The key features of the proposed architecture that will provide these desirable prop-

erties include the following:

1. Fuzzy rules can invoke neural nets for testing "soft" (fuzzy) conditions in their

left-hand-sides.

, Recognition of situations requiring actions on neural networks is accomplished via

fuzzy action rules, whose actions are modified by the degree that the rules' condi-

tions are matched.

.

.

Both high-level descriptions (e.g., input-output characterizations) and the behavior

(e.g., performance evaluations) of neural networks will be modeled using a princi-

pled frame-based language.

The symbolic system will interact with neural nets through a set of generic func-

tions called control tasks. Control tasks will be implemented using methods in

object-oriented programming so that common methods can be shared, and specific

methods can override general ones.

In the following sections, we first discuss the background of this work, then we describe

the hybrid architecture with an emphasis on the features mentioned above. Finally, we

summarize the benefits of our approach.

219

2 Background

2.1 Two Complementary Technologies: Neural Networks and

Artificial Intelligence

Neural networks and symbolic reasoning are two complementary approaches for achieving

the same goal: building autonomous intelligent systems. The major strengths of Neural

Networks are their capabilities for performing flexible classification and adaptive learning.

By automatically capturing similarities among training instances (i.e., adaptive learning),

neural networks are often able to perform flexible classification. That is, when given input

data which is similar, but not identical, to inputs upon which the system has been trained,

the network generates output similar to the trained responses. Consequently, a trained

neural network is able to classify data approximately even when that data is incomplete

or noisy. Thus, while most AI systems cannot tolerate such data, neural networks promise

a system whose performance gracefully degrades under those circumstances.

On the other hand, neural networks have several major weaknesses. They have trouble

handling multiple instances of the same concept. Viewed as a pattern-matcher, they have

trouble dealing with patterns containing variables. They tend to be specialized for a

specific task. Solving complex tasks is likely to require cooperation between many neural
networks, but managing their intercommunication is not well-understood. Control of

the activation and learning behavior of these networks by higher-level modules is also

not well-understood. Because their internal representation is in a form that cannot be

comprehended by the user easily, it is hard to explain the rationale behind the output

of neural networks. Although some of these problems have been addressed by neural

network researchers (e.g., schema theory[2] addresses the first two issues), a neural net

approach that addresses all these problems is yet to be developed. The goal of this

research is to develop a comprehensive solution to these concerns using fuzzy logic and
existing AI techniques.

Certain AI techniques suggest solutions to the problems illustrated above. Different

instances of a concept are easily represented using frame-based knowledge representa-

tion systems. Variables often occur in patterns, which can be matched with data using

a pattern matching facility. The notion of supporting many independent modules that

communicate through a global knowledge base accessible to all modules is an idea central

to many AI systems. For example, blackboard architectures maintain a data structure

(the "blackboard") where all knowledge sources can post or retrieve information. Produc-

tion system architectures also have a working memory that all productions match their

conditions against and act upon. An AI system may also provide a higher-level con-

troller, often called the meta-level architecture, that has knowledge about the lower-level

220

system and is able to control the lower-level system in various ways. The explanation

capabilities of AI systems have been enhanced by explicitly representing problem solving

strategies [15].

Our integration of AI capabilities with neural nets is designed to address these issues.

In Section 2.2, we explain the concerns driving the design. In Section 3, we detail our

approach.

2.2 Problems with Current Hybrid Approaches

Combining neural networks and AI is certainly not a new idea, but previous efforts have

not addressed the important issues raised above. A number of researchers have used

neural networks to reimplement AI techniques such as production systems and semantic

networks [19, 7]. Work in this area mainly demonstrates what neural networks can

do, not that their implementations are better than the conventional ones. Others have

applied neural networks to expert systems, natural language understanding, and other

areas that have mainly utilized conventional AI techniques[9]. Work in these first two

categories applies current neural net technologies, rather than addressing weaknesses of

neural nets. Furthermore, it has demonstrated neural net implementations of things that

AI can easily handle, rather than things that AI has great difficulties in doing (e.g.,

partial matching). A few researchers have introduced ideas from neural networks into

conventional AI techniques or architectures. For example, Anderson's ACT* architecture

incorporates the notion of "activation values" into the memory structure and the rule

base of a production system architecture [1]. Although such hybrid models do attempt to

augment the weaknesses of AI, they do not attempt to address issues regarding multiple

neural nets because there are no neural net modules in these connectionist models at

all. Finally, some efforts have introduced ideas from AI into neural nets. Network

regions, for instance, impose hierarchical structures from frame-based systems onto neural

networks[f]. Although concerned with the weakness of neural nets, these efforts have not

been able to overcome the two technologies' intrinsic differences in data representation

and data manipulation mechanisms.

In neural networks, data are represented in a distributed fashion within dynamic

networks and data manipulation involves numeric computations. In artificial intelligence,

each conceptual entity is represented as a unit composed of symbols and pointers to

other units, and data manipulation involves logical deduction and pattern matching.

Our approach to this mismatch of representations is to integrate AI, not with these

basic mechanisms of neural networks, but rather with their high-level functions: i.e.,

classification and data association. These refer to the capability of a neural net to take

an input pattern and either classify it with respect to some set of classes, or generate an

221

output pattern most closely associated with the input pattern. Viewed at this functional

level, these capabilities are closely related to pattern matching and automated reasoning

functions in symbolic systems.

Based on these observations, we will describe a novel hybrid architecture that allevi-

ates the difficulties encountered by current hybrid models through the use of fuzzy logic

in integrating the two paradigms at their functional levels. The architecture provides an

extremely high degree of synergy between the approaches, along precisely the dimensions

required to facilitate ease of programming and enable scaling-up to larger problems.

2.3 Fuzzy Logic and Neural Networks

Several techniques for integrating fuzzy logic and neural networks have been suggested.

For instance, neural nets have been suggested for learning the membership functions of

a fuzzy set [16]. The learning techniques in neural nets have been applied to learning

fuzzy control rules [12]. Finally, fuzzy cognitive map suggests an approach for capturing

fuzzy knowledge within the framework of associative memories [10]. Our discussion here

will be focused on the roles of fuzzy logic in integrating multiple neural networks and

knowledge-based systems and in monitoring the performance of neural networks.

3 A Hybrid Architecture

A high-level block diagram of the proposed hybrid architecture is shown in Figure 1. The

architecture has four major components: (1) a set of neural net modules, (2) a symbolic

system consisting of a global knowledge base, (3) a fuzzy rule system that supports fuzzy

inference rules and fuzzy action rules, (4) and an object-oriented interface between the

symbolic system and the neural nets. The neural nets process data obtained either from

external sensor devices or from the knowledge base of the symbolic system. The global

knowledge base consists of a fuzzy database and a neural-network tazonomy that describes

meta-level knowledge about the neural nets themselves. The fuzzy database stores data

and hypotheses that can be uncertain, imprecise, or vague. The neural-net taxonomy

consists of neural-net classes, (shown as circles in Figure 1) and individual neural-net

objects that form the leaves of the taxonomy (shown as rectangles). For instance, the

neural-net object BAM1 belongs to the neural net class BAM (Bidirectional Associative

Memory), and inherits all the general properties (e.g., its training procedure and its

activation process) of the BAM class. There is one neural-net object for each neural

net module. The fuzzy rule base consists of two types of rules: fuzzy inference rules and

fuzzy action rules. Fuzzy inference rules make plausible inferences by combining symbolic

222

Knowledge Base

...... 1 [c_u_h_
Neural Net T_momy] i

'_' ----_---z_I A-- I

Database I t'_ _ I I

I I

,, _ _ d _--++---o

t r_---_ r_-_, t
I I_ II P_211 I

_L t I
I " T

1 "',_ /

I j.._ I I

I \. I_

DAM 2

0

0

0

BACK I

BACK 2

--Din

Figure 1: The Hybrid Architecture

223

information with the outputs of neural networks. Control tasks can be invoked either by

procedure calls or by fuzzy action rules to effect activation, learning, and modification of

neural networks. These control tasks are performed by selecting and executing methods

that are inherited through the neural network taxonomy.

The hybrid architecture is an extension of CLASP [23], an advanced AI programming

environment that fuses the best aspects of frames, rules, and object-oriented program-

ruing. In the following sections, we discuss four major technical issues of the proposed

hybrid architecture:

1. Using fuzzy inference rules to combine the output of multiple neural networks with

symbolic information;

2. Modeling meta-level knowledge about neural networks in a symbolic knowledge

base;

3, Using a set of control tasks, which are implemented by methods in object-oriented

programming, to define the interface between symbolic systems and neural nets;

4. Using fuzzy action rules to recognize situations necessitating actions upon neural
networks.

Throughout the following discussion, we will use a sensor fusion system for anti-submarine

warfare as an example to illustrate our approach. This hypothetical system consists

of multiple neural nets for classifying various kinds of sensor input and for integrating

various information about submarines, along with a symbolic expert system for analyzing

the findings and planning anti-submarine strategies.

3.1 Fuzzy Inference Rules

We use fuzzy inference rules to assimilate the outputs of neural networks into the symbolic

system, because neural networks often generate classification results that are imprecise

in nature. For instance, a neural network that determines the hostility classification of a

submarine could generate a qualitative measure of hostility (e.g., hostility degree is 0.7),

or a membership values of several fuzzy sets (e.g., membership value of very-hostile is

0.6, membership value of hostile is 0.8, ...).

A fuzzy inference rule checks certain soft conditions, than make a plausible conclu-

sion based on the degree those conditions are satisfied. The condition side of a fuzzy

rule consists of fuzzy conditions as well as non-fuzzy condition. A fuzzy condition can

be checked by invoking a neural net module in a data-driven fashion (i.e., the neural net

224

If Source was lost due to fade-out in the NEAR-PAST, and

Similar source started up in an another frequency, and

Locations of the sources are relatively CLOSE

Then

The possibility that they are the same Source is MEDIUM.

Figure 2: An Example of Fuzzy Inference Rules and Data-driven Neural Nets

If Report exists for a vessel class Rose to be in the vicinity, and

Source likely to be associated with Rose has been detected,

The_xpect to find other Source types associated with Rose class.

Figure 3: An Example of Fuzzy Inference Rules

is activated by the arrival of data). From the symbolic system's point of view, neural

net modules act as predicates in a fuzzy rule's condition side that check a "soft" (fuzzy)

condition and return a number between zero and one indicating the degree of matching

(e.g., the membership value of a fuzzy set). Figure 2 shows an example of fuzzy infer-

ence rule 1 where source refers to some noise-producing objects, such as propellers and

shafts on ships. Fuzzy sets in the rules are expressed in uppercase. Suppose a neural

net NN1 classifies sensor data from hydrophones into possible sources of the noise. The

fuzzy inference rule will combine the output of the neural net with other symbolic infor-

mation (e.g., the reason a source was lost, the location of the sources) to determine the

applicability of the rule.

In addition to use the output of a neural net in a data-driven fashion, a fuzzy inference

rule can also invoke a neural net in a goal-driven fashion. For instance, the fuzzy inference

rule in Figure 3 creates an expectation about the existence of certain source types. This

expectation can be verified by several neural net modules that classifies noise sources

associated with Rose class vessel.

1The examples in Figures 2 and 3 are two rules in HASP, a Blackboard system that analyzes sensor
data from hydrophone arrays for ocean surveillance mission [8].

225

3.2 Modeling Meta-level Knowledge about Neural Networks

Fora symbolic system to controlneural nets and to use them as modules that extend its

reasoning capabilities,itneeds some information about the performance and the func-

tionalbehaviors (e.g.,input/output descriptions)of the neural nets. Such information

isparticularlycrucialfor integratingneural nets and symbolic systems, as they can not

easilycommunicate with each other otherwise. Our approach is to symbolically repre-

sent information about classesof neural networks and individualneural networks, using

a principledframe-based knowledge representationmechanism, calledterm subsumption

languages[17].Doing so offersthree important advantages.

The model describesthe functionalbehavior of neural networks in a way that helps

the symbolic system invoke neural nets to extend itscapabilities.For instance,an

input/output descriptionof a neural net allows the symbolic expert system to tell

when a question itisworking on can be answered by activatinga particularneural

net.

,

o

It provides the basic structure for our method inheritance mechanism (see Section

3.3). This allows general methods and specific methods to be described at their

appropriate abstraction level, which facilitates the sharing of common methods and

a saving of effort in developing and modifying them.

Finally,this approach enables the symbolic system to reason about the behavior

of neural networks using automatic classificationreasoning capabilitiesof term

subsumption systems[18],which extend the system's knowledge about neural nets

beyond what's stated explicitlyin the model.

Figure 4 shows an example of meta-level knowledge that might be kept about a neu-

ral net for classifying the hostility of a submarine based on its location, speed, direction

of movement, and depth. Several attributes need explanation. Reliability is the cu-

mulative performance measure of the neural net, while performance-measure records

the performance of the neural net's last activation. The reliability-threshold is the

minimum reliability of the neural network that the system can tolerate. A neural net

needs to be modified when its reliability is below its threshold value.

CLASP provides a rich term subsumption language, LOOM [13], for modeling meta-

level knowledge about neural nets. Term Subsumption Languages are knowledge repre-

sentation formalisms that employ a formal language, with a formal semantics, for the

definition of terms (more commonly referred to as concept or classes), and that deduce

whether one term subsumes (is more general that) another [17]. These formalisms gen-

erally descend from the ideas presented in KL-ONE [5]. Term subsumption languages

226

Name : BACK,

Type : Three-layer-feedforward

Learning : Back-propagation

Input: Location, speed, direction,

Output : Hostility

Training- st atus : Trained

Performance-measure : Sat isfactory

Reliability: 0.9

Reliability-threshold: O. 7

depth

Figure 4: Meta-level Knowledge about a Neural Net

are a generalization of both semantic networks and frames because the languages have

well-defined semantics, which is often missing from frames and semantic networks [20, 4].

The major benefit of using a term subsumption language (e.g., LOOM) to model the

neural nets lies in its strong support for developing a consistent and coherent class tax-

onomy. This can be illustrated by the following example. Suppose the model defines

that (1) a possible-spurious-recognition-net is any noise-sensitive-net which has

two examplars that differ in less than two pixels; and, (2) CG1 is a neural net module of

type Carpenter-Grossberg-net, which is a kind of noise-sensitive-net. If CG1 has

two examplars that differ only in one pixel, LOOM will infer that CG1 is a possible-

spurious-recognition-net. Thus, using a term subsumption language to model the

neural net taxonomy improves the consistency of the taxonomy, avoids redundancy in

the model, and minimizes human errors introduced into the meta-level knowledge base.

3.3 Control Tasks and Methods

To link a symbolic system and neural net modules, a hybrid system needs to define a set
of functions that interface between them. These functions facilitate the construction of a

layered hybrid system by serving as the intermediate layer between the symbolic system

and the neural nets. This layered approach means that hybrid systems will be built in a

flexible and extensible way because we can extend the intermediate layer with minimum

modification to the symbolic system and the neural nets.

Our approach to building the intermediate level has two major aspects. First, we

use a set of generic functions (called control tasks) to define the interaction between the

symbolic system and the neural networks. Second, we use methods in object-oriented

227

activate-net L
1"

I activate-input 1for N cycles

I convergence tcheck

 e .ouOo'I 1

Figure 5: An example of control task decomposition

programming to implement control tasks.

Conceptually, we can view control tasks as messages sent back and forth between

symbolic systems and neural networks. Symbolic systems use control tasks to activate

and modify neural network modules; these, in turn, use control tasks to inform the sym-

bolic system about their input/output behaviors. For example, the symbolic system

would send an activate-net message to a neural network object in order to activate its

corresponding neural network module 2. Conversely, the neural network module would

send a set-performance-measure message to the neural net object in order to up-

date the neural net's performance-measure (possibly causing monitoring rules to be

triggered). Some of the basic control tasks supported by the architecture may include:

activate-net, train-net, set-training-status, set-performance-measure, update-

reliability, and remove-training-pattern.

Our approach increases the reusability of modules and reduces the cost of developing

and maintaining the system in two ways. First, it separates the purpose of a task from

its implementation. Using control tasks to indicate "what needs to be done" allows the

symbolic system and the neural nets to interact at an abstraction level that is indepen-

dent of their detailed implementations. Second, our approach facilitates decomposing

tasks into subtasks that can be shared by multiple neural nets. For example, the con-

trol task activate-net can be further decomposed into five subtasks as shown in Figure

5. By decomposing control tasks into subtasks, which are functional modules, we sep-

iA neural network module can also be activated by the arrival of sensor data

228

arate application-specific modules (such as encode-input and decode-output 3) from

application-independent modules (such as activate-input).

CLASP offers a mechanism for defining generic functions (also called operators) that

can be invoked by rules or by function calls in any program [22]. CLASP's capability to

invoke generic functions by rules and by procedural call is important because it allows the

symbolic system to invoke control tasks by rule triggering, and the neural net modules

to initiate control tasks through procedural invocations.

Control tasks will be implemented using method inheritance mechanisms in CLASP's

object-oriented programming capabilities 4. The methods implementing control tasks are

attached to the neural net objects, which are organized into a taxonomy. An individual

neural net inherit all its methods from its parents in the taxonomy. To implement a

control task for a neural net N, the architecture finds a method for the task that is

inherited from the most specific parent of N. This approach increases the reusability of

methods, and avoids redundancy in defining similar methods. For example, although

different bidirectional associative memories (BAM's) may differ in how they encode and

decode symbolic information, they could all share the same activate-input method.

3.4 Fuzzy Action Rules

In addition to storing meta-level information about neural nets and specifying possible

control actions on a neural net, the symbolic system needs a mechanism for recognizing

situations within neural nets that indicate a need for action. Even though production

systems in artificial intelligence offers such a capability, they do not address the issue

of partial matching (accepting an approximate fit between observed data and a rule's

condition). A production system that takes into account the degree of partial matching

will enable the system to respond in a flexible way even in the face of incomplete or noisy

data.

Our approach is to use fuzzy action rules, a generalization of production rules, to issue

control task to neural net modules. A fuzzy action rule can use the degree its condition

is satisfied to adjust its action 5. Depending on the partial matching result, a fuzzy action

rule may or may not be deemed applicable. For example, a rule may be viewed applicable

3In our terminology, encoding refers to transforming raw sensor data or symbolic information into
neural net representations, and decoding refers to transforming neural net representations back into

symbolic form.
4Actually, the method-dispatching mechanism in CLASP is more general than those in object-oriented

programming languages (e.g., SMALLTALK-80) in that it allows programmers to describe more complex
situations in which a method applies [21].

5The partial matching results of fuzzy productions can also be used for conflict resolution[3].

229

If neural net N is a kind of bidirectional associative memory, and

its classification results are UNSATISFACTORY,

Then decrease its reliability SLIGHTLY.

If the reliability of a neural net is VERY LOW,

Then set a goal to diagnose and fix the neural net and initialize

the priority of the goal to be proportional to the degree of matching.

Figure 6: Two Rules that Monitor the Performance of a Neural Net

only if the degree of matching is greater than a threshold value,

To illustrate how we use fuzzy action rules to control activation, training, and per-

formance of neural nets, two monitoring rules (paraphrased into English) are shown in

Figure 6. They monitor neural net modules by updating and acting on the modules'

performance measures. The first rule illustrates how our neural net taxonomy allows

rules to apply over whole classes of neural net modules. The second rule demonstrates

that actions of rules can be high level tasks which cause the symbolic system to pursue

further problem solving and diagnostic reasoning.

4 Summary

We have outlined a novel hybrid architecture that uses fuzzy logic to integrate neural

networks and knowledge-based systems. Our approach offers important synergistic ben-

efits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference

rules extend symbolic systems with approximate reasoning capabilities, which are used

for integrating and interpreting the outputs of neural networks. The symbolic system

captures meta-level information about neural networks and defines its interaction with

neural networks through a set of control tasks. Fuzzy action rules provides a robust

mechanism for recognizing the situations about neural networks that require certain con-

trol actions. The neural nets, on the other hand, offers flexible classification and adaptive

learning capabilities, which is crucial for dynamic and noisy environment. By combining

neural nets and symbolic systems at their functional level through the use of fuzzy logic,

our approach alleviates current difficulties in reconciling differences between the low-level

data processing mechanisms of neural nets and AI systems.

Our technical approach to achieving this high-level integration also offers several

advantages concerning the development and the maintenance of applications based on

230

the hybrid architecture:

1. Fuzzy logic serves as a natural bridge that brings together subsymbolic processing

of neural networks and symbolic reasoning in knowledge-based systems.

2. The interface between symbolic system and neural nets can be modified easily

because it is implemented using a layered and modular approach.

3. Meta-level knowledge about neural nets is stored in a taxonomic structure that

facilitates the sharing of information and procedures (e.g., methods).

4. Representing information about neural nets using a principled AI knowledge repre-

sentation language enables the system to reason about the behavior of neural nets

using AI deductive reasoning capabilities.

The hybrid architecture, which supports communication and control across multi-

ple cooperative neural nets through the use of fuzzy rules, enables the construction of

modular, flexible, and extensible intelligent systems, reduces the effort for developing

and maintaining such systems, and facilitates their application to complex real world

problems that need to perform low-level data classification as well as high-level problem

solving in the presence of uncertainty and incomplete information.

Acknowledgements

I would like to thank Bart Kosko, Robert Neches, Paul Rosenbloom, John Granacki,

and C. C. Lee for helpful discussions and comments about the paper. I am mostly in

debt to Professor Lotfi A. Zadeh, from whom I receive constant encouragements and

inspirations.

References

[1] John R. Anderson. The Architecture of Cognition. Harvard University Press, 1983.

[2] M. Arbib, E. Conklin, and J. Hill.

University Press, 1987.

[3] James Bowen and Jianchu Kang.

From Schema Theory to Language. Oxford

Conflict resolution in fuzzy forward chaining

production systems. In Proceedings of AAAI-88, pages 117-121, 1988.

[4] R. J. Brachman. What is-a is and isn't: An analysis of taxonomic links in semantic

networks. Computer, 16(10):30-36, October 1983.

231

[8]

[7]

Is]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R.J. Brachman and J.G. Schmolze. An overview of the kl-one knowledge represen-

tation system. Cognitive Science, pages 171-216, August 1985.

Hon Wai Chun, Lawrence A. Bookman, , and Niki Afshartous. Network regions:

Alternatives to the winner-take-all structure. In Proceedings of the Tenth Interna-

tional Joint Conference on Artificial Intelligence, pages 380-387. IJCAI, Morgan

Kaufman, 1987.

M. G. Dyer, M. Flowers, and Y. A. Wang. Weight mattrix = pattern of activation:

Encoding semantic networks as distributed representations in dual, a pdp architec-

ture. Technical Report UCLA-AI-88-5, Artificial Intelligence Lab., University of

California at Los Angeles, 1988.

Robert Engelmore and Tony Morgan. Blackboard Systems. Addison-Wesley Pub-

lishing, 1988.

Stephen I. Gallant. Connectionist expert systems. Communications of the A CM,

31(2), February 1988.

Bart Kosko. Fuzzy associative memories. In A. Kandel, editor, Fuzzy Expert Systems.

Addison-Wesley, MA, 1987.

Bart Kosko. Bidirectional associative memories. IEEE Transactions on Systems,

Mand, and Cybernetics, 18(1), 1988.

C. C. Lee. A self-learning rule-based controller employing fuzzy logic and neural net

concepts. International Journal of Intelligent Systems (to appear), 1990.

R. M. MacGregor. A deductive pattern matcher. In Proceedings of AAAL88, 1988.

James L. McClelland and David E. Rumethart. Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, volume 2. Bradford Books, Cam-

bridge, MA, 1986.

R. Neches, W. Swartout, , and J. Moore. Enhanced maintenance and explanation

of expert systems through explicit models of their development. Transactions On

Software Engineering, SE-11(11):1337-1351, November 1985.

Yoh-Han Pao. Adaptive Pattern Recognition and Neural Networks. Addison-Wesley

Publishing, 1989.

Peter F. Patel-Schneider, Bernd Owsnicki-Klewe, Alfred Kobsa, Nicola Guarino,

Robert MacGregor, William S. Mark, Deborah McGuinness, Bernhard Nebel, Al-

brecht Schmiedel, and John Yen. Report on the workshop on term subsumption

languages in knowledge representation, to appear in AI Magazine, 1990.

232

[18] JamesSchmolzeand Thomas Lipkis. Classification in the kl-one knowledge repre-

sentation system. In Proceedings of the Eighth International Joint Conference on

Artificial Intelligence. IJCAI, 1983.

[19] David S. Touretzky and Geoffrey E. Hinton. Symbols among the neurons: Details

of a connectionist inference architecture. In Proceedings of the Ninth International

Joint Conference on Artificial Intelligence, pages 238-243. IJCAI, Morgan Kaufman,

1985.

[201

[21]

[221

[23]

[24]

William A. Woods. Whats's in a link: Foundations for semantic networks. In Daniel

Bobrow and Allan Collins, editors, Representation and Understanding: Studies in

Cognitive Science. Academic Press, 1975.

John Yen. A principled approach to reasoning about specificity of rules. In Proceed-

ings of AAAI-90, August 1990.

John Yen, Hsiao-Lei Juang, and Robert MacGregor. Using object-oriented program-

ming to enhance the maintainability of expert systems, in review, 1990.

John Yen, Robert Neches, and Robert MacGregor. Using terminological models

to enhance the rule-based paradigm. In Proceedings of the Second International

Symposium on Artificial Intelligence, Monterrey, Mexico, October 25-27 1989.

L. A. Zadeh. Possibility theory and soft data analysis. In L. Cobb and R. M. Thrall,

editors, Mathematical Frontiers of the Social and Policy Sciences, pages 69-129.

Westview Press, Boulder, Colorado, 1981.

233

AUTHOR INDEX

Anderson, James A 109

Berenji, Hamid R........................ 1

Bezdek, James C...................... 145

Bishop, Thomas 115

Collins, Dean R....................... 109

Gallant, A. R........................... 61

Gately, Michael T 109

Greenwood, Dan 115

Hayashi, Isao 171

Hi rota, Kaoru 185

Hornik, K 61

Ikoma, Norikazu 185

Jani, Yashvant 81

Keller, James M 205
Kosko, Bert 3

Lea, Robert N 81
Lee, Chuen-Chien 197

Nomura, Hiroyoshi 171

Pal, Sankar K......................... 213

Penz, P. Andrew 109

Ruspini, Enrique H 235

Shelton, Robert O 63

Shew, Kenneth 115

Stevenson, Fareed 115

Stinchcombe, M 61

Symon, James R....................... 161

Taber, Rod 31

Teh, H. H 97

Villarreal, JamesA 63

Wang, P. Z 97
Wakami, Noboru 171

Watanabe, Hiroyuki 161
Werbos, Paul J........................ 153

White, Halbert 61

Wu, Z. Q 97

Yen, John 221

235

PRECEDii_:_ PAGE BLANK l_iOi i:iLMED

S REPORT DOCUMENTATION PAGE
National Aeronautics and
Space Administration

1. Report No.

CP 10061
2. Government Accession No,

4. Title and Subtitle

Proceedings of the Second Joint Technology Workshop on
Neural Networks and Fuzzy Logic

7 Author(s)
Robert N. Lea, Editor

James Villarreal, Editor

9. Performing Organization Name and Address

Lyndon B. Johnson Space Center
Information Technology Division
Houston, TX 77058

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date

April 1990

6. Performing Organization Code
PT4

8. Performing Organization Report NO.

S-624

10.' 'Work Unit No.

11. Contract or Grant NO.

13. Type of Report and Period Covered

Conference Publication

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop
sponsored by the National Aeronautics and Space Administration and cosponsored by the
University of Houston, Clear Lake. The workshop was held April 11 - 13 at the Lyndon B.
Johnson Space Center in Houston, Texas. During the three days, approximately 30 papers

were presented. Technical topics addressed included adaptive system; learning algorithms;
network architectures; vision; robotics; neurobiological connections; speech recognition
and synthesis; fuzzy set theory and application, control and dynamics processing; space

applications; fuzzy logic and neural network computers; approximate reasoning; and
multiobJect decision making.

17. Key Words (Suggested by Author(s))

fuzzy logic, non-Lipschitzian dynamics,
parallel distributed models, algorithms,
neural network, spatiotemporal patterns,
neuron ring, fuzzy controllers, signal
processing, pattern recognition

19 Security Classification (of this report) 20. Security Classification

Unclassified

18. Di_ribution Statement

Unclassified
Volume I - unlimited

Volume II - unlimited

Subject Category - 63

(of this page) 21. No. of pages

Unclassifled

For sale by the National Techmlca' ipf, natlc, r Service, Springfield, VA 22161-2171

22. Price

